论文标题

Prime对在COSET晶格一致性课中进行等分

The prime pairs are equidistributed among the coset lattice congruence classes

论文作者

Agama, Theophilus, Bortolamasim, Marco, Tapia, Arturo

论文摘要

在本文中,我们表明,对于某个常数$ c> 0 $,对于任何$ a> 0 $,存在一些$ x(a)> 0 $,这样,如果$ q \ leq(\ log x)^{a} $,则我们有\ begin \ begin {align}ψ_z(x; \ nathcal {n} n} _q(a,a,a,b),q),&= \ frac {θ(z)} {2ϕ(q)} x + o \ bigG(\ frac {x} {e^{e^{c \ sqrt {\ log x}}} \ bigG)\ nonumber \ nonumber \ end end end {align} for $ x \ geq x(a)$ x(a)特别是对于任何$ q \ leq(\ log x)^{a} $,对于任何$ a> 0 $ \ begin {align}ψ_z(x; \ mathcal {n} _q(a,a,b),q),q),q) $ \ MATHCAL {d}(z)> 0 $,其中$ ϕ(q)= \#\ {(a,b):( p_i,p_i,p_i,p_i+z})\ in \ mathcal {n} _q(a,a,b)\} $。

In this paper we show that for some constant $c>0$ and for any $A>0$ there exist some $x(A)>0$ such that, If $q\leq (\log x)^{A}$ then we have \begin{align} Ψ_z(x;\mathcal{N}_q(a,b),q) &= \frac{Θ(z)}{2ϕ(q)}x + O\bigg(\frac{x}{e^{c\sqrt{\log x}}}\bigg)\nonumber \end{align}for $x\geq x(A)$ for some $Θ(z)>0$. In particular for $q\leq (\log x)^{A}$ for any $A>0$\begin{align}Ψ_z(x;\mathcal{N}_q(a,b),q)\sim \frac{x\mathcal{D}(z)}{2ϕ(q)}\nonumber \end{align}for some constant $\mathcal{D}(z)>0$ and where $ϕ(q)= \# \{(a,b):(p_i,p_{i+z})\in \mathcal{N}_q(a,b)\}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源