论文标题

使用基于学习的粗范围估计的水下水下地形映射

Close-Proximity Underwater Terrain Mapping Using Learning-based Coarse Range Estimation

论文作者

Arain, Bilal, Dayoub, Feras, Rigby, Paul, Dunbabin, Matthew

论文摘要

本文提出了一种用于自动水下车辆(AUV)的水下地形映射的新方法,该方法靠近复杂的3D环境。所提出的方法使用基于单眼图像学习的场景范围估算器作为传感器创建地形的概率高程图。该场景范围估计器可以过滤瞬态对象,例如鱼类和照明变化。映射方法认为,随着AUV在环境中移动时,估计的场景范围和机器人都构成了不确定性。最终的高程图可用于反应性路径计划和避免障碍物,以使机器人系统尽可能接近水下地形。通过将重建的地形与地面真实参考图进行比较,并使用在珊瑚礁环境中收集的AUV现场数据进行了比较,可以在模拟的水下环境中评估我们的方法的性能。模拟和现场结果表明,在礁石环境中使用单眼摄像头的障碍物检测和范围估算是可行的。

This paper presents a novel approach to underwater terrain mapping for Autonomous Underwater Vehicles (AUVs) operating in close proximity to complex 3D environments. The proposed methodology creates a probabilistic elevation map of the terrain using a monocular image learning-based scene range estimator as a sensor. This scene range estimator can filter transient objects such as fish and lighting variations. The mapping approach considers uncertainty in both the estimated scene range and robot pose as the AUV moves through the environment. The resulting elevation map can be used for reactive path planning and obstacle avoidance to allow robotic systems to approach the underwater terrain as closely as possible. The performance of our approach is evaluated in a simulated underwater environment by comparing the reconstructed terrain to ground truth reference maps, as well as demonstrated using AUV field data collected within in a coral reef environment. The simulations and field results show that the proposed approach is feasible for obstacle detection and range estimation using a monocular camera in reef environments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源