论文标题
在标准化的RICCI流下,均匀表面的均匀Lipschitz连续性
Uniform Lipschitz continuity of the isoperimetric profile of compact surfaces under normalized Ricci flow
论文作者
论文摘要
我们表明,紧凑型Riemannian歧管$(m,g)$的等值概况$ h_ {g(t)}(ξ)$当量子$ g(t)$连续变化时,共同连续。我们还表明,当$ m $是紧凑的表面,而$ g(t)$在归一化的ricci流下进化时,$ h^2_ {g(t)}(ξ)$是统一的lipschitz连续的,因此$ h_ {g(t)}(ξ)(ξ)$在本地LipsChitz持续持续。
We show that the isoperimetric profile $h_{g(t)}(ξ)$ of a compact Riemannian manifold $(M,g)$ is jointly continuous when metrics $g(t)$ vary continuously. We also show that, when $M$ is a compact surface and $g(t)$ evolves under normalized Ricci flow, $h^2_{g(t)}(ξ)$ is uniform Lipschitz continuous and hence $h_{g(t)}(ξ)$ is uniform locally Lipschitz continuous.