论文标题

缓慢下降的梯度不变性:光谱重新归一化和能量景观技术

Gradient Invariance of Slow Energy Descent: Spectral Renormalization and Energy Landscape Techniques

论文作者

Cakir, Hayriye Guckir, Promislow, Keith

论文摘要

对于能量的梯度流,光谱重新归一化(SRN)和能量景观(EL)技术已被用来在低能歧管附近建立轨道的慢运动。我们表明,两种方法都适用于由梯度家族诱导的流程,并比较结果的范围和特异性。 SRN技术捕获了歧管的较薄邻域中的流动,从而使慢流的领先顺序表示,作为流向流向歧管的切线平面的投影。 SRN方法需要在低能量歧管上的点上的全梯度流的线性化方面存在光谱差距。我们提供了保留光谱间隙的梯度选择的条件,并表明在这些梯度选择下,慢速流动是不变的。 EL方法估计了缓慢流的大小,但无法捕获其领先顺序。但是,EL仅需要对能量的第二个变化的正常训练,并且不需要光谱条件在全流量的线性化上。因此,它适用于给定能量的一类梯度。我们开发了SRN方法假设意味着EL方法的适用性的条件,并确定了EL方法适用的大型梯度家族。特别是我们采用两种方法来得出1+1D功能化的Cahn-Hilliard(FCH)梯度流中多脉冲溶液的相互作用,从而导致了由均质差分运算符的功率产生的一类梯度的梯度不变性。

For gradient flows of energies, both spectral renormalization (SRN) and energy landscape (EL) techniques have been used to establish slow motion of orbits near low-energy manifold. We show that both methods are applicable to flows induced by families of gradients and compare the scope and specificity of the results. The SRN techniques capture the flow in a thinner neighborhood of the manifold, affording a leading order representation of the slow flow via as projection of the flow onto the tangent plane of the manifold. The SRN approach requires a spectral gap in the linearization of the full gradient flow about the points on the low-energy manifold. We provide conditions on the choice of gradient under which the spectral gap is preserved, and show that up to reparameterization the slow flow is invariant under these choices of gradients. The EL methods estimate the magnitude of the slow flow, but cannot capture its leading order form. However the EL only requires normal coercivity for the second variation of the energy, and does not require spectral conditions on the linearization of the full flow. It thus applies to a much larger class of gradients of a given energy. We develop conditions under which the assumptions of the SRN method imply the applicability of the EL method, and identify a large family of gradients for which the EL methods apply. In particular we apply both approaches to derive the interaction of multi-pulse solutions within the 1+1D Functionalized Cahn-Hilliard (FCH) gradient flow, deriving gradient invariance for a class of gradients arising from powers of a homogeneous differential operator.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源