论文标题

一维肌动蛋白生长模型的踏板稳定性

Treadmilling stability of a one-dimensional actin growth model

论文作者

Abeyaratne, Rohan, Puntel, Eric, Tomassetti, Giuseppe

论文摘要

肌动蛋白的生长是一种基本的生物物理过程,同时也是扩散介导的表面生长的典型例子。我们制定了一个耦合的化学机械,一维生长模型,其中包括材料积聚和消融。由结合肌动蛋白单体组成的实心杆固定在一端,并连接到另一端的弹性装置。例如,这种类似弹簧的装置可能是原子力显微镜的悬臂尖端。随着固体的生长并影响生长速率,弹簧施加的压缩力增加。杆的机械行为,自由肌动蛋白单体在周围溶剂中的扩散以及积聚/消融末端的动力学生长法。肌动蛋白的本构响应是由凸的,但否则任意的弹性应变能密度功能。研究了以连续不断发展的身体长度为特征的踏板溶液。存在和稳定结果以简单公式的形式凝结,并讨论了它们的物理意义。

Actin growth is a fundamental biophysical process and it is, at the same time, a prototypical example of diffusion-mediated surface growth. We formulate a coupled chemo-mechanical, one-dimensional growth model encompassing both material accretion and ablation. A solid bar composed of bound actin monomers is fixed at one end and connected to an elastic device at the other. This spring-like device could, for example, be the cantilever tip of an atomic force microscope. The compressive force applied by the spring on the bar increases as the solid grows and affects the rate of growth. The mechanical behaviour of the bar, the diffusion of free actin monomers in a surrounding solvent and the kinetic growth laws at the accreting/ablating ends are accounted for. The constitutive response of actin is modeled by a convex but otherwise arbitrary elastic strain energy density function. Treadmilling solutions, characterized by a constant length of the continuously evolving body, are investigated. Existence and stability results are condensed in the form of simple formulas and their physical implications are discussed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源