论文标题
在某个EPR(爱因斯坦,波多尔斯基,罗森)问题上
On some EPR (Einstein, Podolsky, Rosen) issues
论文作者
论文摘要
EPR(Einstein-Podolsky-Rosen)论文的批判性重新考虑表明,可以在不使用“物理现实元素”的概念的情况下开发EPR参数,从而消除了本文逻辑链中的任何哲学元素。 EPR参数被剥夺了其哲学装饰品,明显地减少了量子力学无法做到的:将确定的值分配给两个不兼容的物理量。根据贝尔 - 类型定理建立的隐藏变量理论是基于假设局部条件意味着两个测量空间之间的统计独立性的基础,例如分离。此假设只有在两个测量之间的统计依赖性需要因果关系之间有因果关系的额外假设。这一额外的假设排除了统计依赖性可能是由于正在研究的物理系统的内在特性引起的。因此,隐藏变量理论是建立在限制的基础上,从而导致它们被实验所驳斥。量子机械非位置,用于描述EPR - 型实验的量子性非位置,严格连接到假设(NDV假说),符合纠缠对的双光子在测量之前没有明确的极化。这两个假设仅用于描述EPR实验,而不用于进行预测。因此,可以将它们丢弃而不降低有关纠缠光子对的量子力学的预测能力。此外,可以通过修饰用于研究纠缠光子对的标准实验设备的修改来实验测试这两个假设。
A critical reconsideration of the EPR (Einstein-Podolsky-Rosen) paper shows that the EPR argument can be developed without using the concept of `element of physical reality', thus eliminating any philosophical element in the logical chains of the paper. Deprived of its philosophical ornament, the EPR argument plainly reduces to require what quantum mechanics can not do: to assign definite values to two incompatible physical quantities. Hidden variables theories built up according to Bell - type theorems are formulated on the basis of the assumption that the locality condition implies the statistical independence between two measurements space - like separated. This assumption is valid only with the additional one that statistical dependence between two measurements requires a causal connection between them. This additional assumption rules out the possibility that statistical dependence may due to an intrinsic property of the physical system under study. Therefore, hidden variables theories are built up with a restriction which leads them to be disproved by experiment. Quantum mechanical non - locality, invoked for describing EPR - type experiments, is strictly connected to the hypothesis (NDV hypothesis) according to which the twin photons of entangled pairs do not have a definite polarization before measurements. Both hypotheses are used only for describing EPR experiments and not for making predictions. Therefore, they can be dropped without reducing the predictive power of quantum mechanics concerning entangled photons pairs. Furthermore, both hypotheses can be experimentally tested by a modification of a standard experimental apparatus designed for studying entangled photons pairs.