论文标题

通过混合训练改善无监督的域适应

Improve Unsupervised Domain Adaptation with Mixup Training

论文作者

Yan, Shen, Song, Huan, Li, Nanxiang, Zou, Lincan, Ren, Liu

论文摘要

无监督的域适应性研究利用具有丰富标签的相关源域来建立未注释的目标域的预测建模的问题。最近的工作观察到,流行的学习域不变特征的对抗性方法不足以实现理想的目标域性能,因此引入了其他训练限制,例如集群假设。但是,这些方法分别对源和目标域施加了限制,忽略了它们之间的重要相互作用。在这项工作中,我们建议使用混合配方进行跨域的培训约束,以直接解决目标数据的概括性能。为了解决潜在的巨大领域差异,我们进一步提出了一个功能级的一致性正常器,以促进域间约束。当添加域内混合和域对抗学习时,我们的一般框架可显着提高图像分类和人类活动识别的几项重要任务的最新性能。

Unsupervised domain adaptation studies the problem of utilizing a relevant source domain with abundant labels to build predictive modeling for an unannotated target domain. Recent work observe that the popular adversarial approach of learning domain-invariant features is insufficient to achieve desirable target domain performance and thus introduce additional training constraints, e.g. cluster assumption. However, these approaches impose the constraints on source and target domains individually, ignoring the important interplay between them. In this work, we propose to enforce training constraints across domains using mixup formulation to directly address the generalization performance for target data. In order to tackle potentially huge domain discrepancy, we further propose a feature-level consistency regularizer to facilitate the inter-domain constraint. When adding intra-domain mixup and domain adversarial learning, our general framework significantly improves state-of-the-art performance on several important tasks from both image classification and human activity recognition.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源