论文标题
在线轨迹优化,使用不精确的梯度反馈用于时变环境
Online Trajectory Optimization Using Inexact Gradient Feedback for Time-Varying Environments
论文作者
论文摘要
本文考虑了在时间变化环境下的在线轨迹设计问题。我们在时变约束凸优化的框架内制定了一般的轨迹优化问题,并提出了有关此类问题的在线梯度上升算法的新颖版本。此外,梯度反馈很嘈杂,允许我们将所提出的算法用于一系列实用应用,在这些应用程序中很难获得真正的梯度。与最可用的文献相反,我们呈现了拟议算法的离线sublinear遗憾,直到最佳离线解决方案的路径长度变化,累积梯度和梯度变化中的误差。此外,我们在离线动态遗憾中建立了一个下限,这定义了任何轨迹的最佳性。 为了显示拟议算法的功效,我们考虑了两个实际问题。首先,我们考虑设备设备(D2D)通信设置,目标是设计用户轨迹,同时最大程度地连接到Internet。第二个问题与在具有静态和动态目标位置的海洋环境中的强烈干扰下,无人层面车辆(USV)的节能轨迹的在线规划有关。详细的仿真结果证明了所提出的算法对合成和真实数据集的重要性。可以在{https://www.youtube.com/watch?v=fcrqqwtpf \_0}上找到现实世界数据集的视频。
This paper considers the problem of online trajectory design under time-varying environments. We formulate the general trajectory optimization problem within the framework of time-varying constrained convex optimization and proposed a novel version of the online gradient ascent algorithm for such problems. Moreover, the gradient feedback is noisy and allows us to use the proposed algorithm for a range of practical applications where it is difficult to acquire the true gradient. In contrast to the most available literature, we present the offline sublinear regret of the proposed algorithm up to the path length variations of the optimal offline solution, the cumulative gradient, and the error in the gradient variations. Furthermore, we establish a lower bound on the offline dynamic regret, which defines the optimality of any trajectory. To show the efficacy of the proposed algorithm, we consider two practical problems of interest. First, we consider a device to device (D2D) communications setting, and the goal is to design a user trajectory while maximizing its connectivity to the internet. The second problem is associated with the online planning of energy-efficient trajectories for unmanned surface vehicles (USV) under strong disturbances in ocean environments with both static and dynamic goal locations. The detailed simulation results demonstrate the significance of the proposed algorithm on synthetic and real data sets. Video on the real-world datasets can be found at {https://www.youtube.com/watch?v=FcRqqWtpf\_0}