论文标题

圣人:医疗切片合成的空间意识到的插值网络

SAINT: Spatially Aware Interpolation NeTwork for Medical Slice Synthesis

论文作者

Peng, Cheng, Lin, Wei-An, Liao, Haofu, Chellappa, Rama, Zhou, Shaohua Kevin

论文摘要

由于高存储器成本和各向异性分辨率,基于深度学习的单图像超分辨率(SISR)方法将应用于3D医疗体积数据(即CT和MR图像)时面临各种挑战,这会对他们的性能产生不利影响。此外,主流SISR方法旨在在特定的上采样因子上起作用,这使它们在临床实践中无效。在本文中,我们引入了一个具有空间意识的插值网络(SAINT)以进行医疗切片合成,以减轻体积数据构成的记忆约束。与其他超分辨率方法相比,Saint利用体素间距信息提供了理想的细节级别,并允许即时确定上采样因子。我们的评估基于来自包含肝脏,结肠,肝血管和肾脏的四个数据集的853个CT扫描的评估表明,根据医疗切片的合成质量,Saint始终优于其他SISR方法,同时仅使用单个模型来处理不同的抬高因子。

Deep learning-based single image super-resolution (SISR) methods face various challenges when applied to 3D medical volumetric data (i.e., CT and MR images) due to the high memory cost and anisotropic resolution, which adversely affect their performance. Furthermore, mainstream SISR methods are designed to work over specific upsampling factors, which makes them ineffective in clinical practice. In this paper, we introduce a Spatially Aware Interpolation NeTwork (SAINT) for medical slice synthesis to alleviate the memory constraint that volumetric data poses. Compared to other super-resolution methods, SAINT utilizes voxel spacing information to provide desirable levels of details, and allows for the upsampling factor to be determined on the fly. Our evaluations based on 853 CT scans from four datasets that contain liver, colon, hepatic vessels, and kidneys show that SAINT consistently outperforms other SISR methods in terms of medical slice synthesis quality, while using only a single model to deal with different upsampling factors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源