论文标题

c* - 代数及其K理论的同态

Homomorphisms of C*-algebras and their K-theory

论文作者

Naderi, Parastoo, Rooin, Jamal

论文摘要

令$ a $和$ b $为c*-algebras,$φ\ colon a \ to b $是$*$ - 同构。我们讨论了诱导地图$ \ mathrm {k} _ {0}(φ)\ colon \ mathrm {k} _ {0}(a)\ to \ mathrm {k Mathrm {k} _ {0} _ {0} _ {0} _(b)$的属性和(共同)图像的属性。尤其是,我们对共同形象不含扭力感兴趣,并表明当$ a $ a和$ b $是可交值和Unital时,$ b $具有真正的排名零,而$φ$是Unital and Impotive的。我们还表明,如果$ \ mathrm {k} _ {0}(φ)$是iNjective,并且$ a $具有稳定的排名第一和实际等级零。

Let $A$ and $B$ be C*-algebras and $φ\colon A\to B$ be a $*$-homomorphism. We discuss the properties of the kernel and (co-)image of the induced map $\mathrm{K}_{0}(φ)\colon \mathrm{K}_{0}(A) \to \mathrm{K}_{0}(B)$ on the level of K-theory. In particular, we are interested in the case that the co-image is torsion free, and show that it holds when $A$ and $ B $ are commutative and unital, $B$ has real rank zero, and $φ$ is unital and injective. We also show that $ A$ is embeddable in $B$ if $ \mathrm{K}_{0}(φ)$ is injective and $A$ has stable rank one and real rank zero.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源