论文标题

对单位承诺问题的解决方案策略,包括多种不确定性

A Solution Strategy to the Unit Commitment Problem Incorporating Manifold Uncertainties

论文作者

Zhai, Fang, Shi, Libao

论文摘要

广泛的不确定性使风能和电网之间的相互作用更加复杂,难以建模和处理。本文提出了一种解决单位承诺解决方案(UC)问题的方法,该方法固有地包含了在风能和电网中存在的多种不确定性,包括概率,可能性和间隔度量。为了以全面和有效的方式处理多种不确定性,证据理论(ET)用于将这些不确定变量融合到Dempster-Shafer结构中。此外,将功率损失引入到功率平衡限制中,并采用扩展的仿射算术(EAA)来评估由上述不确定性传播引起的功率损失的不确定性。关于已建立优化模型的混合 - 污染非线性特征,开发了增强的灰狼优化器(GWO)算法来解决所提出的模型。具体而言,相应的承诺时间表由一种二进制灰狼优化器(BGWO)决定,而经济调度(ED)由GWO解决。最后,研究了IEEE 30总线测试系统和一个实尺寸的183个布斯中国电力系统,以证明所提出的模型和方法的有效性和可扩展性。

The widespread uncertainties have made the interaction between wind power and power grid more complicated and difficult to model and handle. This paper proposes an approach for the solution of unit commitment (UC) problem incorporating multiple uncertainties that exist in both wind power and power grid inherently, consisting of probability, possibility, and interval measures. To handle the manifold uncertainties in a comprehensive and efficient manner, the evidence theory (ET) is applied to fuse these uncertain variables into Dempster-Shafer structure. Moreover, the power loss is introduced into power balance constraints, and the extended affine arithmetic (EAA) is employed to evaluate the uncertainty of power loss caused by the propagation of the aforementioned uncertainties. Regarding the mix-discrete nonlinear characteristics of the established optimization model, an enhanced grey wolf optimizer (GWO) algorithm is developed to solve the proposed model. Specifically, the corresponding commitment schedule is determined by a kind of binary grey wolf optimizer (BGWO), and the economic dispatch (ED) is settled by GWO. Finally, the IEEE 30-bus test system and a real-sized 183-bus China power system are studied to demonstrate the validity and scalability of the proposed model and method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源