论文标题

Lovelock黑色P型玻璃液磁通

Lovelock black p-branes with fluxes

论文作者

Cisterna, Adolfo, Fuenzalida, Sebastián, Oliva, Julio

论文摘要

在本文中,我们构建了$ \ Mathcal {M} _D = \ Mathcal {M} _D \ times \ times \ times \ Mathcal {s s}^p $,带有$ d+p $ d+p $ d+p $ d \ ge5 $ n $ d p $ n $ d p $,p $ n $ n o $ n $ n o $ n o $ n $ n $ n of $ d = p $ n of $ d = p $,p $ {正恒定曲率的欧几里得流形。我们表明,可以通过包括合适的非最低耦合$ P-1 $形式字段来实现,该场与内部空间的音量形式成正比。我们通过使用一个和两种形式的基本领域为Einstein-Gauss-Bonnet理论提供了此结构的明确详细信息,并提供$ d+2 $和$ d+3 $尺寸,并提供允许在任何dimension $ d+d+d+d+d $ d $ d $ d $中构建相同紧凑型的公式。这些磁通的紧凑性导致了关于紧凑型歧管的有效洛夫洛克理论,因此可以在爱因斯坦 - 加斯 - 邦纳特案例中找到Boulware-Deser家族中的黑洞。

In this paper we construct compactifications of generic, higher curvature Lovelock theories of gravity over direct product spaces of the type $\mathcal{M}_D=\mathcal{M}_d \times \mathcal{S}^p $, with $D=d+p$ and $d\ge5$, where $\mathcal{S}^p$ represents an internal, Euclidean manifold of positive constant curvature. We show that this can be accomplished by including suitable non-minimally coupled $p-1$-form fields with a field strength proportional to the volume form of the internal space. We provide explicit details of this constructions for the Einstein-Gauss-Bonnet theory in $d+2$ and $d+3$ dimensions by using one and two-form fundamental fields, and provide as well the formulae that allows to construct the same family of compactification in any Lovelock theory from dimension $d+p$ to dimension $d$. These fluxed compactifications lead to an effective Lovelock theory on the compactfied manifold, allowing therefore to find, in the Einstein-Gauss-Bonnet case, black holes in the Boulware-Deser family.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源