论文标题

多维添加机的时间中央限制定理

Temporal Central Limit Theorem for Multidimensional Adding Machine

论文作者

Levin, Mordechay B.

论文摘要

令$ p_1,...,p_ {s+1} $是不同的素数,让$ t_ {p_i} $为von niemann -kakutani添加机器$(1 \ leq i \ leq s)$,$ t _ {\ natercal {\ natercal {p}}(p}}(\ nathcal {p}}}(\ Mathbf {\ nathbf {x {x} {x}} t_ {p_s}(x_s))$。令$ y_i \ in(0,1)$为$ p_ {s+1} $ - 有理$(1 \ leq i \ leq s)$,$ \ m \ m mathbf {1} _ {[0,\ mathbf {y})} $ box $ $ [0,y_1)$ y __1 $ \ d y y y y y y y ties y \ cd cd cd cd cd cd cd cd cd cd Times \ cd cd cdots \ cd cdots \ cd cd。在本文中,我们证明了以下中心限制定理:\ begin {equination} \ nonumber \ frac {\ sum_ {\ sum_ {k = -n}^{n-1} \ mathbf {1} _ {0,[0,\ suptbf {y}) y_s} {\ mathcal {h} _n(\ mathbf {x})\ log_2^{s/2} n} \; \ stackrel {w} {\ longrightArrow} \; \ nathcal {n}(0,1),\ end {equation}时,$ n $从$ \ {1,...,...,...,n \ \} $,n \ \} $,$ \ \ mathcal { \ UPSILON_2] $带有一些$ \ UPSILON_1,\ UPSILON_2> 0 $,几乎所有$ \ Mathbf {x} \ in [0,1)^s $。

Let $p_1,...,p_{s+1}$ be distinct primes and let $T_{p_i}$ be the von Niemann - Kakutani adding machine $(1 \leq i \leq s)$, $T_{\mathcal{P}}(\mathbf{x}) =(T_{p_1}(x_1),..., T_{p_s}(x_s))$. Let $y_i \in (0,1)$ be a $p_{s+1}$-rational $(1 \leq i \leq s)$, $\mathbf{1}_{[0,\mathbf{y})}$ the indicator function of the box $[0,y_1) \times \cdots\times [0,y_s)$. In this paper, we prove the following central limit theorem: \begin{equation} \nonumber \frac{ \sum_{k=-n}^{n-1} \mathbf{1}_{[0,\mathbf{y})}(T^k_P(\mathbf{x})) -2n y_1 y_2\dots y_s }{\mathcal{H}_N(\mathbf{x}) \log_2^{s/2} N} \; \stackrel{w}{\longrightarrow} \;\mathcal{N}(0,1), \end{equation} when $n$ is sampled uniformly from $\{ 1,...,N\}$, $\mathcal{H}_N(\mathbf{x}) \in [\upsilon_1, \upsilon_2]$ with some $\upsilon_1, \upsilon_2 >0$, for almost all $\mathbf{x} \in [0,1)^s$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源