论文标题
量子电路设计用于评估基于功能值二进制扩展方法的先验功能
Quantum circuits design for evaluating transcendental functions based on a function-value binary expansion method
论文作者
论文摘要
量子算术在计算基础上构成了许多基于电路的量子算法的基本组成部分。关于代数函数可逆实施的可逆实现,有许多研究,而对高级先验功能的研究很少。我们建议根据一种新方法评估先验功能,该方法称为QFBE(量子功能值二元扩展)方法。该方法以简单的递归方式将先验函数的评估转换为代数函数的计算。我们介绍了基于QFBE方法的对数,指数,三角和三角函数的量子电路。电路的效率在安装在台湾Taihulight超级计算机上的量子虚拟计算系统上。 QFBE方法为评估先验功能提供了统一和编程的解决方案,它将是许多量子算法的重要构建块。
Quantum arithmetic in the computational basis constitutes the fundamental component of many circuit-based quantum algorithms. There exist a lot of studies about reversible implementations of algebraic functions, while research on the higher-level transcendental functions is scant. We propose to evaluate the transcendental functions based on a novel methodology, which is called qFBE (quantum Function-value Binary Expansion) method. This method transforms the evaluation of transcendental functions to the computation of algebraic functions in a simple recursive way. We present the quantum circuits for solving the logarithmic, exponential, trigonometric and inverse trigonometric functions based on the qFBE method. The efficiency of the circuits is demonstrated on a quantum virtual computing system installed on the Sunway TaihuLight supercomputer. The qFBE method provides a unified and programmed solution for the evaluation of transcendental functions, and it will be an important building block for many quantum algorithms.