论文标题
旋转玻璃系统的概率密度理论
A Probability Density Theory for Spin-Glass Systems
论文作者
论文摘要
旋转玻璃系统是代表统计物理和计算机科学中多体现象的通用模型。 NP-HARD组合优化问题的高质量解决方案可以编码为旋转玻璃系统的低能状态。通常,由于临近相变的关键减速,因此很难评估此类模型的相关物理和计算特性。理想情况下,人们可以在深度学习方面使用最新的进步来表征这些复杂系统的低能特性。不幸的是,许多最有前途的机器学习方法仅适用于连续变量的分布,因此不能直接应用于离散的旋转玻璃模型。为此,我们为具有任意维度,相互作用和本地场的旋转玻璃系统开发了连续的概率密度理论。我们展示了我们的配方如何以实例方式编码旋转玻璃的关键物理和计算特性,而无需平均淬火障碍。我们表明,我们的方法超出了平均场理论,并确定了从凸到非凸的能量景观的过渡,因为温度降低了临界温度。我们将形式主义应用于许多旋转玻璃模型,包括Sherrington-Kirkpatrick(SK)模型,在随机Erdős-rényi图上进行旋转以及随机限制的Boltzmann机器。
Spin-glass systems are universal models for representing many-body phenomena in statistical physics and computer science. High quality solutions of NP-hard combinatorial optimization problems can be encoded into low energy states of spin-glass systems. In general, evaluating the relevant physical and computational properties of such models is difficult due to critical slowing down near a phase transition. Ideally, one could use recent advances in deep learning for characterizing the low-energy properties of these complex systems. Unfortunately, many of the most promising machine learning approaches are only valid for distributions over continuous variables and thus cannot be directly applied to discrete spin-glass models. To this end, we develop a continuous probability density theory for spin-glass systems with arbitrary dimensions, interactions, and local fields. We show how our formulation geometrically encodes key physical and computational properties of the spin-glass in an instance-wise fashion without the need for quenched disorder averaging. We show that our approach is beyond the mean-field theory and identify a transition from a convex to non-convex energy landscape as the temperature is lowered past a critical temperature. We apply our formalism to a number of spin-glass models including the Sherrington-Kirkpatrick (SK) model, spins on random Erdős-Rényi graphs, and random restricted Boltzmann machines.