论文标题

细分了解和适应性虹膜识别

Segmentation-Aware and Adaptive Iris Recognition

论文作者

Wang, Kuo, Kumar, Ajay

论文摘要

虹膜识别已成为人类识别最准确,最方便的生物识别之一,并且越来越多地在广泛的电子安全应用中使用。已知获得AT-A距离或在较小的成像环境下获取的虹膜图像的质量可以降低虹膜匹配的精度。眼周的信息固有地嵌入了此类虹膜图像中,可以利用在这种非理想情况下协助虹膜识别。我们对此类虹膜模板的分析还表明,感兴趣的区域的显着降解和减少,在这种区域中,虹膜识别可以从相似性距离中受益,相似性距离可以考虑不同的二进制位,而不是直接在文献中直接使用锤击距离。可以通过在可用的虹膜区域的有效区域中纳入差异,以更准确的虹膜识别,从而动态增强眼周信息。本文介绍了这种分割辅助的自适应框架,以更准确地受到侵袭。该框架的有效性是在三个公开可用的IRIS数据库中使用数据库和交叉数据库评估评估的,并验证了拟议的IRIS识别框架的优点。

Iris recognition has emerged as one of the most accurate and convenient biometric for the human identification and has been increasingly employed in a wide range of e-security applications. The quality of iris images acquired at-a-distance or under less constrained imaging environments is known to degrade the iris matching accuracy. The periocular information is inherently embedded in such iris images and can be exploited to assist in the iris recognition under such non-ideal scenarios. Our analysis of such iris templates also indicates significant degradation and reduction in the region of interest, where the iris recognition can benefit from a similarity distance that can consider importance of different binary bits, instead of the direct use of Hamming distance in the literature. Periocular information can be dynamically reinforced, by incorporating the differences in the effective area of available iris regions, for more accurate iris recognition. This paper presents such a segmentation-assisted adaptive framework for more accurate less-constrained iris recognition. The effectiveness of this framework is evaluated on three publicly available iris databases using within-dataset and cross-dataset performance evaluation and validates the merit of the proposed iris recognition framework.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源