论文标题

通过多尺度编码器网络(MED-NET)的黑素细胞病变共聚焦图像中细胞模式的分割

Segmentation of Cellular Patterns in Confocal Images of Melanocytic Lesions in vivo via a Multiscale Encoder-Decoder Network (MED-Net)

论文作者

Kose, Kivanc, Bozkurt, Alican, Alessi-Fox, Christi, Gill, Melissa, Longo, Caterina, Pellacani, Giovanni, Dy, Jennifer, Brooks, Dana H., Rajadhyaksha, Milind

论文摘要

体内光学显微镜正在进入常规的临床实践,用于非侵入性指导诊断和治疗癌症和其他疾病,因此开始减少对传统活检的需求。但是,对光学图像的阅读和分析通常仍然是定性的,主要依赖于视觉检查。在这里,我们提出了一种称为“多尺度编码器网络(MED-NET)”的自动语义分割方法,该方法以定量方式将像素标记为模式类别。我们方法中的新颖性是在多个尺度上对纹理模式进行建模。此模拟了检查病理图像的过程,该过程通常从低放大倍率开始(低分辨率,较大的视野),然后仔细检查具有更高放大倍率的可疑区域(较高的分辨率,较小的视野)。我们培训并测试了我们的模型,该模型是黑素细胞病变的117个反射率共聚焦显微镜(RCM)镶嵌物,该应用程序是该应用程序的广泛数据集,在美国的四个诊所收集,并在意大利收集了两个。通过患者的交叉验证,我们分别达到了像素的平均灵敏度和$ 70 \ pm11 \%$和$ 95 \ pm2 \%$的特异性,其$ 0.71 \ pm0.09 $ dice系数在六个类中。在这种情况下,我们对数据诊所进行了分区,并测试了该模型在多个诊所中的普遍性。在这种情况下,我们分别达到了像素的平均灵敏度和$ 74 \%$和$ 95 \%$的特异性,并具有$ 0.75 $骰子系数。我们将MED-NET与最新的语义分割模型进行了比较,并实现了更好的定量分割性能。我们的结果还表明,由于其嵌套的多尺度体系结构,Med-Net模型更加一致地注释RCM Mosaics,避免了不切实际的注释。

In-vivo optical microscopy is advancing into routine clinical practice for non-invasively guiding diagnosis and treatment of cancer and other diseases, and thus beginning to reduce the need for traditional biopsy. However, reading and analysis of the optical microscopic images are generally still qualitative, relying mainly on visual examination. Here we present an automated semantic segmentation method called "Multiscale Encoder-Decoder Network (MED-Net)" that provides pixel-wise labeling into classes of patterns in a quantitative manner. The novelty in our approach is the modeling of textural patterns at multiple scales. This mimics the procedure for examining pathology images, which routinely starts with low magnification (low resolution, large field of view) followed by closer inspection of suspicious areas with higher magnification (higher resolution, smaller fields of view). We trained and tested our model on non-overlapping partitions of 117 reflectance confocal microscopy (RCM) mosaics of melanocytic lesions, an extensive dataset for this application, collected at four clinics in the US, and two in Italy. With patient-wise cross-validation, we achieved pixel-wise mean sensitivity and specificity of $70\pm11\%$ and $95\pm2\%$, respectively, with $0.71\pm0.09$ Dice coefficient over six classes. In the scenario, we partitioned the data clinic-wise and tested the generalizability of the model over multiple clinics. In this setting, we achieved pixel-wise mean sensitivity and specificity of $74\%$ and $95\%$, respectively, with $0.75$ Dice coefficient. We compared MED-Net against the state-of-the-art semantic segmentation models and achieved better quantitative segmentation performance. Our results also suggest that, due to its nested multiscale architecture, the MED-Net model annotated RCM mosaics more coherently, avoiding unrealistic-fragmented annotations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源