论文标题
二进制主机连接:来自其宿主星系性能的引力波二进制的天体物理学
The binary-host connection: astrophysics of gravitational wave binaries from their host galaxy properties
论文作者
论文摘要
由二进制中子星(BNSS)合并产生的引力波伴随电磁对应物,从而可以识别相关的宿主星系。我们探讨了宿主星系的性质与导致合并的天体物理过程的关系。人们认为,在给定时期,银河系中的BNS合并速率主要取决于银河系的恒星形成历史以及二元系统的基本合并时间延迟分布。同时,银河系的恒星历史取决于星系随时间的宇宙学演变,并且与宇宙结构的生长有关。我们根据一个简单的时间段模型来研究结构形成的BNS合并的主机。我们发现,不同的时间延迟分布可以预测相关宿主星系的不同特性,包括恒星质量,恒星形成率,光晕质量以及局部和大规模宿主的大规模聚类的分布。如今,与延迟时间短的BNS合并在一起,更喜欢在恒星形成率较高的宿主中,而延迟时间长的宿主居住在大量恒星形成低的巨大光环中。我们表明,使用$ {\ Mathcal O}(10)$来自当前重力波检测器网络的事件,可以在跟踪恒星质量,光晕质量或恒星形成率的地层通道之间进行初步区分。我们还发现,可以使用其宿主的聚类特性对具有电磁望远镜的重力波事件进行跟进的策略。
Gravitational waves produced from the merger of binary neutron stars (BNSs) are accompanied by electromagnetic counterparts, making it possible to identify the associated host galaxy. We explore how properties of the host galaxies relate to the astrophysical processes leading to the mergers. It is thought that the BNS merger rate within a galaxy at a given epoch depends primarily on the galaxy's star-formation history as well as the underlying merger time-delay distribution of the binary systems. The stellar history of a galaxy, meanwhile, depends on the cosmological evolution of the galaxy through time, and is tied to the growth of structure in the Universe. We study the hosts of BNS mergers in the context of structure formation by populating the Universe Machine simulations with gravitational-wave events~ according to a simple time-delay model. We find that different time-delay distributions predict different properties of the associated host galaxies, including the distributions of stellar mass, star-formation rate, halo mass, and local and large-scale clustering of hosts. BNSs that merge today with short delay times prefer to be in hosts that have high star-formation rates, while those with long delay times live in dense regions within massive halos that have low star formation. We show that with ${\mathcal O}(10)$ events from current gravitational-wave detector networks, it is possible to make preliminary distinctions between formation channels which trace stellar mass, halo mass, or star-formation rate. We also find that strategies to follow up gravitational-wave events with electromagnetic telescopes can be significantly optimized using the clustering properties of their hosts.