论文标题

使用时间状态对齐的异常时间序列之间的根本原因检测

Root Cause Detection Among Anomalous Time Series Using Temporal State Alignment

论文作者

Chakraborty, Sayan, Shah, Smit, Soltani, Kiumars, Swigart, Anna

论文摘要

软件系统的规模和复杂性的最新提高为时间序列监测和异常检测过程带来了新的挑战。现有异常检测方法的主要缺点是,它们缺乏上下文信息来帮助利益相关者确定异常原因。这个问题称为根本原因检测,在当今复杂的分布式软件系统中尤其具有挑战性,因为所考虑的指标通常具有多个内部和外部依赖性。需要大量的手动分析和强大的领域专业知识来隔离问题的正确原因。在本文中,我们提出了一种通过分析时间序列波动中的模式来隔离异常原因的方法。我们的方法将时间序列视为来自通过一系列离散的隐藏状态的基础过程的观察。当给定问题导致基础状态的不一致但均匀的转移时,想法是跟踪效果的传播。我们通过在Zillows ClickStream数据中找到异常的根本原因来评估我们的方法,通过识别一组观察到的波动之间的因果模式。

The recent increase in the scale and complexity of software systems has introduced new challenges to the time series monitoring and anomaly detection process. A major drawback of existing anomaly detection methods is that they lack contextual information to help stakeholders identify the cause of anomalies. This problem, known as root cause detection, is particularly challenging to undertake in today's complex distributed software systems since the metrics under consideration generally have multiple internal and external dependencies. Significant manual analysis and strong domain expertise is required to isolate the correct cause of the problem. In this paper, we propose a method that isolates the root cause of an anomaly by analyzing the patterns in time series fluctuations. Our method considers the time series as observations from an underlying process passing through a sequence of discretized hidden states. The idea is to track the propagation of the effect when a given problem causes unaligned but homogeneous shifts of the underlying states. We evaluate our approach by finding the root cause of anomalies in Zillows clickstream data by identifying causal patterns among a set of observed fluctuations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源