论文标题
通过分析置换测试进行功能响应设计
Functional Response Designs via the Analytic Permutation Test
论文作者
论文摘要
有关实验设计的大量文献从Fisher和Snedecor延伸到现代。当数据超出单变量正态性的假设时,将征集包括基于等级的统计和排列测试在内的非参数方法。置换测试是一种多功能精确的非参数显着性测试,其假设比相似的参数测试所需的假设少。排列测试的主要倒数是高计算成本,使这种方法用于复杂的数据和复杂的实验设计,并且在任何需要快速结果(例如高吞吐量流数据)的应用中完全不可行。我们通过应用浓度不等式来纠正此问题,从而提出了无计算置换测试 - 即无排序置换测试。该一般框架应用于多元,矩阵值和功能数据。我们通过新颖的beta变换来提高这些浓度界限。我们通过使用弱依赖的Rademacher混沌和修改后的解耦不平等,将理论从2样本扩展到$ K $样本测试。我们在包括伯克利生长曲线和音素数据集的经典功能数据集上测试了此方法。我们进一步考虑了两个实验设计下对口语元音声音的分析:拉丁正方形和随机块设计。
Vast literature on experimental design extends from Fisher and Snedecor to the modern day. When data lies beyond the assumption of univariate normality, nonparametric methods including rank based statistics and permutation tests are enlisted. The permutation test is a versatile exact nonparametric significance test that requires drastically fewer assumptions than similar parametric tests. The main downfall of the permutation test is high computational cost making this approach laborious for complex data and sophisticated experimental designs and completely infeasible in any application requiring speedy results such as high throughput streaming data. We rectify this problem through application of concentration inequalities and thus propose a computation free permutation test -- i.e. a permutation-less permutation test. This general framework is applied to multivariate, matrix-valued, and functional data. We improve these concentration bounds via a novel incomplete beta transform. We extend our theory from 2-sample to $k$-sample testing through the use of weakly dependent Rademacher chaoses and modified decoupling inequalities. We test this methodology on classic functional data sets including the Berkeley growth curves and the phoneme dataset. We further consider analysis of spoken vowel sound under two experimental designs: the Latin square and the randomized block design.