论文标题
扭曲的摩西重建域的激子响应中的破碎镜子对称性$ _2 $/摩西$ _2 $ biLayers
Broken mirror symmetry in excitonic response of reconstructed domains in twisted MoSe$_2$/MoSe$_2$ bilayers
论文作者
论文摘要
范德华异质结构通过堆叠和扭曲的结构工程最近用于创建Moiré超晶格,从而实现了固态系统中新的光学和电子性能的实现。特别是,已证明过渡金属二甲构基化金属元素(TMD)的扭曲双层中的Moiré晶格可导致激子捕获,宿主莫特绝缘和超导状态,并充当独特的Hubbard系统,其相关的电子状态可以被光学地检测和操纵。在结构上,这些扭曲的异质结构还具有原子重建和域的形成。不幸的是,由于典型的Moiré结构域的纳米级尺寸(约10 nm),因此无法系统地研究原子重建对这些异质结构的电子和激子特性的影响,并且经常被忽略。在这里,我们使用接近0 $^o $ twist Angle mose $ _2 $/mose $ _2 $ thembohedral ab/ba域的双层域,直接探测具有远场光学域的单个域的示例性能。我们表明,该系统具有破碎的镜像/反转对称性,AB和BA域在相反的方向上支持与平面外(Z)电偶极矩相互支持的层间激子。地面$γ$ -K -K Interamayer Invicons(x $ _ {i,1} $)的偶极取向可以用电场拨动,而高能量K-K-K-k k-k Interamayer Invecitons(x $ _ {i,2} $我们的研究揭示了晶体对称性对TMD激子的深远影响,并指向实现拓扑非平凡的系统,异国情调的跨境,集体激发型相位和量子发射极阵列的新途径。
Structural engineering of van der Waals heterostructures via stacking and twisting has recently been used to create moiré superlattices, enabling the realization of new optical and electronic properties in solid-state systems. In particular, moiré lattices in twisted bilayers of transition metal dichalcogenides (TMDs) have been shown to lead to exciton trapping, host Mott insulating and superconducting states, and act as unique Hubbard systems whose correlated electronic states can be detected and manipulated optically. Structurally, these twisted heterostructures also feature atomic reconstruction and domain formation. Unfortunately, due to the nanoscale sizes (~10 nm) of typical moiré domains, the effects of atomic reconstruction on the electronic and excitonic properties of these heterostructures could not be investigated systematically and have often been ignored. Here, we use near-0$^o$ twist angle MoSe$_2$/MoSe$_2$ bilayers with large rhombohedral AB/BA domains to directly probe excitonic properties of individual domains with far-field optics. We show that this system features broken mirror/inversion symmetry, with the AB and BA domains supporting interlayer excitons with out-of-plane (z) electric dipole moments in opposite directions. The dipole orientation of ground-state $Γ$-K interlayer excitons (X$_{I,1}$) can be flipped with electric fields, while higher-energy K-K interlayer excitons (X$_{I,2}$) undergo field-asymmetric hybridization with intralayer K-K excitons (X$_0$). Our study reveals the profound impacts of crystal symmetry on TMD excitons and points to new avenues for realizing topologically nontrivial systems, exotic metasurfaces, collective excitonic phases, and quantum emitter arrays via domain-pattern engineering.