论文标题

回忆,Cohen-Macaulay Auslander代数和Gorenstein投射猜想

Recollements, Cohen-Macaulay Auslander algebras and Gorenstein projective conjecture

论文作者

Qin, Yongyun

论文摘要

结果表明,CM-FINITE代数的衍生类别的4次卷曲诱导相应的Cohen-Macaulay Auslander代数的2重新卷曲,该代数概括了PAN的主要定理[S. S. Y. Pan,Cohen-Macaulay Auslander代数的衍生等效性,J。PureAppl。代数216(2012),355 {363]。此外,在3(或4)个代数的无限派生类别下,Auslander-Reiten的猜想和Gorenstein投射猜想都不变。

It is shown that a 4-recollement of derived categories of CM-finite algebras induces a 2-recollement of the corresponding Cohen-Macaulay Auslander algebras, which generalises the main theorem of Pan [S. Y. Pan, Derived equivalences for Cohen-Macaulay Auslander algebras, J. Pure Appl. Algebra 216 (2012), 355{363]. Moreover, both Auslander- Reiten conjecture and Gorenstein projective conjecture are shown invariant under 3 (or 4)-recollement of unbounded derived categories of algebras.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源