论文标题

$ C_1 $猜想的混合特征的病理案例

A pathological case of the $C_1$ conjecture in mixed characteristic

论文作者

Kaur, Inder

论文摘要

令$ k $为特征0。修复整数$ r,d $ coprime,带有$ r \ geq 2 $。令$ x_k $为平滑,投射,几何连接的曲线,$ g \ geq 2 $定义了K。在本文中,我们证明存在$ x_k $的本地自由捆,带等级$ r $和clistant $ l_k $。这在微不足道的情况下证明了$ c_1 $在混合特征中的$ C_1 $猜想,用于在平滑,投影曲线上具有固定等级的稳定稳定带皮带的模量空间。

Let $K$ be a field of characteristic 0. Fix integers $r,d$ coprime with $r \geq 2$. Let $X_K$ be a smooth, projective, geometrically connected curve of genus $g \geq 2$ defined over K. Assume there exists a line bundle $L_K$ on $X_K$ of degree $d$. In this article we prove the existence of a stable locally free sheaf on $X_K$ with rank $r$ and determinant $L_K$. This trivially proves the $C_1$ conjecture in mixed characteristic for the moduli space of stable locally free sheaves of fixed rank and determinant over a smooth, projective curve.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源