论文标题

Econas:寻找经济神经建筑搜索的代理

EcoNAS: Finding Proxies for Economical Neural Architecture Search

论文作者

Zhou, Dongzhan, Zhou, Xinchi, Zhang, Wenwei, Loy, Chen Change, Yi, Shuai, Zhang, Xuesen, Ouyang, Wanli

论文摘要

神经体系结构搜索(NAS)在许多计算机视觉任务中取得了重大进展。尽管已经提出了许多方法来提高NAS的效率,但搜索进度仍然很费力,因为在大型搜索空间上培训和评估合理的体系结构正在耗时。因此,评估代理下的网络候选者(即计算降低的设置)因此变得不可避免。在本文中,我们观察到,大多数现有代理在保持网络候选者之间的等级一致性方面表现出不同的行为。特别是,某些代理可以更可靠 - 比较其降低的设定绩效和最终绩效并没有太大的差异。在本文中,我们系统地研究了一些广泛采用的还原因素,并报告了我们的观察结果。受这些观察的启发,我们提出了可靠的代理,并进一步制定了层次代理策略。该策略在候选网络上花费了更多的计算,这些计算可能更准确,同时在早期阶段就以快速的代理抛弃了无主张的计算。这导致了经济的基于进化的NA(ECONA),与基于进化的艺术状态相比,它实现了令人印象深刻的400倍搜索时间(8 vs. 3150 GPU天)。我们的观察结果领导的一些新代理也可以应用于加速其他NAS方法,同时仍然能够发现具有良好的候选网络,其性能与以前的代理策略相匹配。

Neural Architecture Search (NAS) achieves significant progress in many computer vision tasks. While many methods have been proposed to improve the efficiency of NAS, the search progress is still laborious because training and evaluating plausible architectures over large search space is time-consuming. Assessing network candidates under a proxy (i.e., computationally reduced setting) thus becomes inevitable. In this paper, we observe that most existing proxies exhibit different behaviors in maintaining the rank consistency among network candidates. In particular, some proxies can be more reliable -- the rank of candidates does not differ much comparing their reduced setting performance and final performance. In this paper, we systematically investigate some widely adopted reduction factors and report our observations. Inspired by these observations, we present a reliable proxy and further formulate a hierarchical proxy strategy. The strategy spends more computations on candidate networks that are potentially more accurate, while discards unpromising ones in early stage with a fast proxy. This leads to an economical evolutionary-based NAS (EcoNAS), which achieves an impressive 400x search time reduction in comparison to the evolutionary-based state of the art (8 vs. 3150 GPU days). Some new proxies led by our observations can also be applied to accelerate other NAS methods while still able to discover good candidate networks with performance matching those found by previous proxy strategies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源