论文标题

应变梯度驱动原子尺度模拟的树突生长

Strain gradient drives lithium dendrite growth from the atomic-scale simulations

论文作者

Xu, Gao, Hao, Feng, Hong, Jiawang, Fang, Daining

论文摘要

树突形成是下一代高能密度锂(LI)金属电池的主要障碍,例如容量损失和短路。成功的Li树突增长机制的理解不足,成功的LI树突缓解策略的发展阻碍了。在以前的模型和实验中,已经研究了LI板诱导的LI金属中的内部应力及其对树突生长的影响,而潜在的微观机制则难以捉摸。在这里,我们通过第一原理的计算和从头算分子动力学模拟分析了电镀诱导的应激在树突形成中的作用。我们表明,沉积的Li形成了铜(CU)底物上的稳定的原子纳米膜结构。发现Li原子的吸附能从Li-Cu界面增加到沉积的Li表面,从而导致界面处的LI原子更加聚集。与原始的Li金属相比,早期沉积的LI被压实并遭受平面压力应力。有趣的是,我们发现从Li-Cu界面到沉积的Li表面存在巨大的应变梯度分布,这使得沉积的原子与Cu表面相邻,往往会随着扰动而向上压,从而导致树突生长。这种理解提供了对Li树突生长的原子尺度起源的见解,并且可能有助于抑制基于Li-Metal的可充电电池中的Li Dendrite。

Dendrite formation is a major obstacle, such as capacity loss and short circuit, to the next-generation high-energy-density lithium (Li) metal batteries. The development of successful Li dendrite mitigation strategies is impeded by an insufficient understanding of Li dendrite growth mechanisms. Li-plating-induced internal stress in Li metal and its effect on dendrite growth have been studied in previous models and experiments, while the underlying microcosmic mechanism is elusive. Here, we analyze the role of plating-induced stress in dendrite formation through first-principles calculations and ab initio molecular dynamics simulations. We show that the deposited Li forms a stable atomic nanofilm structure on copper (Cu) substrate. It is found that the adsorption energy of Li atoms increases from the Li-Cu interface to deposited Li surface, leading to more aggregated Li atoms at the interface. Compared to the pristine Li metal, the deposited Li in the early stage becomes compacted and suffers in-plane compressive stress. Interestingly, we find that there is a giant strain gradient distribution from the Li-Cu interface to deposited Li surface, which makes the deposited atoms adjacent to the Cu surface tend to press upwards with perturbation, causing the dendrite growth. This understanding provides an insight to the atomic-scale origin of Li dendrite growth and may be useful for suppressing the Li dendrite in the Li-metal-based rechargeable batteries.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源