论文标题
可计算的多片多模型高斯相关度量和连续变量系统的一夫一妻制关系
A computable multipartite multimode Gaussian correlation measure and the monogamy relation for continuous-variable systems
论文作者
论文摘要
在本文中,为任何$ k \ geq 2 $的可计算多部分高斯高斯量子相关度量$ {\ Mathcal M}^{(k)} $。 ${\mathcal M}^{(k)}$ depends only on the covariance matrix of CV states, is invariant under any permutation of subsystems, is a quantification without ancilla problem, nonincreasing under $k$-partite local Gaussian channels (particularly, invariant under $k$-partite local Gaussian unitary operations), vanishes on $k$-partite product states.对于$ k $ - 分机高斯州$ρ$,$ {\ MATHCAL M}^{(k)}(ρ)= 0 $ IF,仅当$ρ$是$ k $ - $ -Partite产品状态。因此,对于两分情况,$ {\ Mathcal M} = {\ Mathcal M}^{(2)} $是高斯量子不满和高斯几何不偏见的可访问的替换。此外,$ {\ Mathcal m}^{(k)} $满足统一条件,层次结构条件,即多部分量子相关度量应服从。 $ {\ Mathcal m}^{(k)} $不是一夫一妻制,而是$ {\ Mathcal m}^{(k)} $是完整的一夫一妻制且紧密完整的一夫一妻制。
In this paper, a computable multipartite multimode Gaussian quantum correlation measure ${\mathcal M}^{(k)}$ is proposed for any $k$-partite continuous-variable (CV) systems with $k\geq 2$. ${\mathcal M}^{(k)}$ depends only on the covariance matrix of CV states, is invariant under any permutation of subsystems, is a quantification without ancilla problem, nonincreasing under $k$-partite local Gaussian channels (particularly, invariant under $k$-partite local Gaussian unitary operations), vanishes on $k$-partite product states. For a $k$-partite Gaussian state $ρ$, ${\mathcal M}^{(k)}(ρ)=0$ if and only if $ρ$ is a $k$-partite product state. Thus, for the bipartite case, ${\mathcal M}={\mathcal M}^{(2)}$ is an accessible replacement of the Gaussian quantum discord and Gaussian geometric discord. Moreover, ${\mathcal M}^{(k)}$ satisfies the unification condition, hierarchy condition that a multipartite quantum correlation measure should obey. ${\mathcal M}^{(k)}$ is not bipartite like monogamous, but, ${\mathcal M}^{(k)}$ is complete monogamous and tight complete monogamous.