论文标题
单层MOS2中的旋转光线灯光样激子分散体
Twisted-light-revealed Lightlike Exciton Dispersion in Monolayer MoS2
论文作者
论文摘要
扭曲的光带有明确的轨道角动量(OAM)。可以任意设置其OAM的量子数L,使其成为实现高维量子纠缠和超宽带宽光学通信结构的极好光源。为了开发与这种有前途的光源兼容的固态光电系统,及时挑战的任务是有效且相干地将光OAM传递到某些固态光电材料中。在最先进的新兴材料中,原子上薄的单层过渡金属二甲藻元化(ML-TMD),由于其尺寸降低而具有超强的轻度相互作用,因此使本身适用于新型应用的潜在材料。在这项研究中,我们对具有明确定义的量化OAM的扭曲光的光兴激励进行了光致发光(PL)光谱研究。我们主要观察到在入射光的每一个增量中,光谱峰能的明显增加。光谱蓝移的观察到的非线性L依赖性证明了OAM从激动人心的扭曲光转移到ML-TMD中的山谷激子,这是通过我们的分析和计算模拟很好地解释的。更令人兴奋的是,扭曲的光激发表现出相对于转移的OAM进行激子转变,从而使我们能够从测得的光谱移位中推断出激子带分散。因此,测得的非线性L依赖性光谱移位显示,ML-TMD中山谷激子的异常光明的激子带状分散,这是先前的理论研究预测的,并通过我们的实验设置在我们的实验设置中首次证明,该设置利用了独特的扭曲光源。
Twisted light carries a well-defined orbital angular momentum (OAM) per photon. The quantum number l of its OAM can be arbitrarily set, making it an excellent light source to realize high-dimensional quantum entanglement and ultra-wide bandwidth optical communication structures. To develop solid-state optoelectronic systems compatible with such promising light sources, a timely challenging task is to efficiently and coherently transfer the optical OAM of light to certain solid-state optoelectronic materials. Among the state-of-the-art emergent materials, atomically thin monolayer transition metal dichalcogenide (ML-TMD), featured by ultra-strong light-matter interaction due to its reduced dimensionality, renders itself a potential material suitable for novel applications. In this study, we carried out photoluminescence (PL) spectroscopy studies of ML-MoS2 under photoexcitation of twisted light with well-defined quantized OAM. We mainly observed pronounced increases in the spectral peak energy for every increment of l of the incident twisted light. The observed non-linear l-dependence of the spectral blue shifts evidences the OAM transfer from the exciting twisted light to the valley excitons in ML-TMDs, which is well accounted for by our analysis and computational simulation. Even more excitingly, the twisted light excitation is shown to make excitonic transitions relative to the transferred OAM, enabling us to infer the exciton band dispersion from the measured spectral shifts. Consequently, the measured non-linear l-dependent spectral shifts revealed an unusual lightlike exciton band dispersion of valley excitons in ML-TMDs that is predicted by previous theoretical studies and evidenced for the first time via our experimental setup that utilizes the unique twisted light source.