论文标题
第一和最后一个模式运输的一声协调
One-Shot Coordination of First and Last Mode Transportation
论文作者
论文摘要
在本文中,我们考虑对馈线车辆进行协调的控制,以进行第一和最后一个模式运输。该模型是宏观的,有大量的需求和供应以及车辆的流量。我们提出了一个单枪问题,用于在固定时间窗口内或从固定时间窗口内的集线器运输需求和供应配置。我们提出了一个统一的优化框架,适用于运营商的利润最大化和社会福利最大化。后一个目标对于诸如灾难响应之类的应用程序很有用。优化问题中的决策变量是车辆的路由和分配不同服务。 与K.K.T.分析我们提出了一种脱机方法来减少问题大小。此外,我们还通过最佳地找到给定总供应的供应,并呈现出最大利润的封闭式表达方式,从而分析了最大化利润的问题,该表达式可以在所有供应配置的所有供应配置中获得的最大利润。我们还显示了在第一个模式问题中最佳供应位置与最后模式问题之间的等效性。我们根据最佳替代运输的成本和旅行时间提出了定价模型,并为馈线服务提供了必要条件。我们通过模拟说明结果,还将提议的模型与传统的车辆路由问题进行比较。通过模拟,我们还将问题的显微镜版本与决策变量为整数进行了比较。我们证明,针对宏观公式提出的路线还原算法仍然可用于计算微观问题的几乎最佳解决方案,并具有很大提高的计算效率。
In this paper, we consider coordinated control of feeder vehicles for first and last mode transportation. The model is macroscopic with volumes of demands and supplies along with flows of vehicles. We propose a one-shot problem for transportation of demand to or from a hub within a fixed time window, assuming the knowledge of the demand and supply configurations. We present a unified optimization framework that is applicable for both operator profit maximization and social welfare maximization. The latter goal is useful for applications such as disaster response. The decision variables in the optimization problem are routing and allocations of the vehicles for different services. With K.K.T. analysis we propose an offline method for reducing the problem size. Further, we also analyze the problem of maximizing profits by optimally locating the supply for a given total supply and present a closed form expression of the maximum profits that can be earned over all supply configurations for a given demand configuration. We also show an equivalence between optimal supply location in the first mode problem and the last mode problem. We present a model for pricing based on the cost and travel time of the best alternate transportation and present necessary conditions for the feeder service to be viable. We illustrate the results through simulations and also compare the proposed model with a traditional vehicle routing problem. Through simulations, we also compare with the microscopic version of the problem with the decision variables being integers. We demonstrate that the route reduction algorithm proposed for the macroscopic formulation is still useful for computing nearly optimal solutions to the microscopic problem with much improved computational efficiency.