论文标题
CAE-LO:利用雷达的探测法利用完全无监督的卷积自动编码器进行兴趣点检测和功能描述
CAE-LO: LiDAR Odometry Leveraging Fully Unsupervised Convolutional Auto-Encoder for Interest Point Detection and Feature Description
论文作者
论文摘要
作为3D映射,自动驾驶和机器人导航中的重要技术,LiDAR ODOMETIEN仍然是一项艰巨的任务。适当的数据结构和无监督的深度学习是实现具有高性能的易于调整的激光雷达探针解决方案的关键。利用紧凑型2D结构化球形环投影模型和体素模型,该模型保留了输入数据的原始形状,我们提出了一个完全不受监督的基于卷积自动编码器的激光镜(CAE-LO)(CAE-LO),该旋转仪(CAE-lo)使用2D CAE从球形数据中检测到来自球形数据的兴趣点,并使用2D CAE和使用多分辨率Voxel 3D Cae的特征提取了从球形数据中提取物。我们做出了几个关键贡献:1)基于Kitti数据集的实验表明,我们的兴趣点可以捕获更多的本地细节,以提高非结构化场景的匹配成功率,而我们的功能在匹配的内部比例方面的实验率超过了50%以上; 2)此外,我们还提出了一种基于匹配对传输的关键帧选择方法,基于球形环的扩展利益点的键帧的探测方法,以及一种向后的姿势更新方法。进程改进实验验证了所提出的思想的可行性和有效性。
As an important technology in 3D mapping, autonomous driving, and robot navigation, LiDAR odometry is still a challenging task. Appropriate data structure and unsupervised deep learning are the keys to achieve an easy adjusted LiDAR odometry solution with high performance. Utilizing compact 2D structured spherical ring projection model and voxel model which preserves the original shape of input data, we propose a fully unsupervised Convolutional Auto-Encoder based LiDAR Odometry (CAE-LO) that detects interest points from spherical ring data using 2D CAE and extracts features from multi-resolution voxel model using 3D CAE. We make several key contributions: 1) experiments based on KITTI dataset show that our interest points can capture more local details to improve the matching success rate on unstructured scenarios and our features outperform state-of-the-art by more than 50% in matching inlier ratio; 2) besides, we also propose a keyframe selection method based on matching pairs transferring, an odometry refinement method for keyframes based on extended interest points from spherical rings, and a backward pose update method. The odometry refinement experiments verify the proposed ideas' feasibility and effectiveness.