论文标题

拉格朗日平均曲率方程溶液的无穷大的渐近行为

Asymptotic behavior at infinity of solutions of Lagrangian mean curvature equations

论文作者

Bao, Jiguang, Liu, Zixiao

论文摘要

我们研究了一类拉格朗日平均曲率方程$f_τ(λ(d^2U))= f(x)$在外部域中的二次生长条件的渐近行为,其中$ f $满足了Infinity在Infinity的给定渐近行为。当f(x)是近乎无穷大的常数时,不必再要求二次生长条件了。这些结果是一种外部Liouville定理,也可以被视为Pogorelov,Flanders和Yuan定理的扩展。

We studied the asymptotic behavior of solutions with quadratic growth condition of a class of Lagrangian mean curvature equations $F_τ(λ(D^2u))=f(x)$ in exterior domain, where $f$ satisfies a given asymptotic behavior at infinity. When f(x) is a constant near infinity, it is not necessary to demand the quadratic growth condition anymore. These results are a kind of exterior Liouville theorem, and can also be regarded as an extension of theorems of Pogorelov, Flanders and Yuan.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源