论文标题
拉格朗日平均曲率方程溶液的无穷大的渐近行为
Asymptotic behavior at infinity of solutions of Lagrangian mean curvature equations
论文作者
论文摘要
我们研究了一类拉格朗日平均曲率方程$f_τ(λ(d^2U))= f(x)$在外部域中的二次生长条件的渐近行为,其中$ f $满足了Infinity在Infinity的给定渐近行为。当f(x)是近乎无穷大的常数时,不必再要求二次生长条件了。这些结果是一种外部Liouville定理,也可以被视为Pogorelov,Flanders和Yuan定理的扩展。
We studied the asymptotic behavior of solutions with quadratic growth condition of a class of Lagrangian mean curvature equations $F_τ(λ(D^2u))=f(x)$ in exterior domain, where $f$ satisfies a given asymptotic behavior at infinity. When f(x) is a constant near infinity, it is not necessary to demand the quadratic growth condition anymore. These results are a kind of exterior Liouville theorem, and can also be regarded as an extension of theorems of Pogorelov, Flanders and Yuan.