论文标题
基于规则的受害者预测模型
A Rule-Based Model for Victim Prediction
论文作者
论文摘要
在本文中,我们提出了一种新型的自动化模型,称为“处于危险的人群(VIPAR)分数”的漏洞指数,以确定罕见的人群未来的射击受害。同样,专注的威慑方法可以确定脆弱的人,并提供某些类型的治疗方法(例如外展服务),以防止社区中的暴力行为。拟议的基于规则的发动机模型是第一个基于AI的受害者预测模型。本文旨在将重点威慑策略的清单与Vipar得分清单列表进行比较,涉及其未来拍摄受害的预测能力。该模型利用犯罪学研究,将年龄,过去的犯罪史和同伴影响作为未来暴力的主要预测指标。采用社交网络分析来衡量同龄人对结果变量的影响。该模型还使用逻辑回归分析来验证变量选择。我们的经验结果表明,耐Vipar的得分预测未来射击受害者的25.8%和未来的射击嫌疑人的32.2%,而重点的威慑名单预测,未来的射击受害者中有13%和未来射击嫌疑人的9.4%。该模型在预测未来的致命和非致命枪击事件方面优于集中威慑政策的情报清单。此外,我们讨论了对无罪推定权利的担忧。
In this paper, we proposed a novel automated model, called Vulnerability Index for Population at Risk (VIPAR) scores, to identify rare populations for their future shooting victimizations. Likewise, the focused deterrence approach identifies vulnerable individuals and offers certain types of treatments (e.g., outreach services) to prevent violence in communities. The proposed rule-based engine model is the first AI-based model for victim prediction. This paper aims to compare the list of focused deterrence strategy with the VIPAR score list regarding their predictive power for the future shooting victimizations. Drawing on the criminological studies, the model uses age, past criminal history, and peer influence as the main predictors of future violence. Social network analysis is employed to measure the influence of peers on the outcome variable. The model also uses logistic regression analysis to verify the variable selections. Our empirical results show that VIPAR scores predict 25.8% of future shooting victims and 32.2% of future shooting suspects, whereas focused deterrence list predicts 13% of future shooting victims and 9.4% of future shooting suspects. The model outperforms the intelligence list of focused deterrence policies in predicting the future fatal and non-fatal shootings. Furthermore, we discuss the concerns about the presumption of innocence right.