论文标题

反馈集的紧密本地化

Tight Localizations of Feedback Sets

论文作者

Hecht, Michael, Gonciarz, Krzysztof, Horvát, Szabolcs

论文摘要

经典的NP-HARD反馈弧设置问题(FASP)和反馈顶点集问题(FVSP)要求最低集弧$ \ varepsilon \ subseteq e $ $或vertices $ c $ν\ subseteq v $,其删除$ g g \ g \ setMinus \ varepsilon $ g \ g \ g \ g \ g \ g \ seT $ $ g =(v,e)$ cyclic。尽管已知这两个问题都是APX,但近似算法或不合适性的证据尚不清楚。我们提出了一个新的$ \ Mathcal {O}(| V || e |^4)$ - 定向FASP的启发式。虽然已知$ r \ 1.3606 $的比率是APX硬度的下限,至少通过经验验证,我们达到了$ r \ leq 2 $的近似值。最相关的应用程序,例如电路测试,要求在大型稀疏图上求解FASP,由于我们的方法,可以在紧密的误差范围内有效地完成。

The classical NP-hard feedback arc set problem (FASP) and feedback vertex set problem (FVSP) ask for a minimum set of arcs $\varepsilon \subseteq E$ or vertices $ν\subseteq V$ whose removal $G\setminus \varepsilon$, $G\setminus ν$ makes a given multi-digraph $G=(V,E)$ acyclic, respectively. Though both problems are known to be APX-hard, approximation algorithms or proofs of inapproximability are unknown. We propose a new $\mathcal{O}(|V||E|^4)$-heuristic for the directed FASP. While a ratio of $r \approx 1.3606$ is known to be a lower bound for the APX-hardness, at least by empirical validation we achieve an approximation of $r \leq 2$. The most relevant applications, such as circuit testing, ask for solving the FASP on large sparse graphs, which can be done efficiently within tight error bounds due to our approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源