论文标题

不变的代数表面和受约束的系统

Invariant Algebraic Surfaces and Constrained Systems

论文作者

da Silva, Paulo Ricardo, Perez, Otávio Henrique

论文摘要

我们研究了平滑矢量场的流量$ x $,而不是不变的表面$ m $,这是理性第一积分的水平。它导致我们研究受障碍的受限系统。我们确定一个子集$ \ MATHCAL {I} \子集M $,我们称之为“ pseudo-impasse”设置,并通过$ \ Mathcal {i} $的点分析x的流程。文献中众所周知的系统体现了我们的结果:Lorenz,Chen,Falkner-Skan和Fisher-Kolmogorov。我们还研究了1-参数的综合系统和最小套装的群体。我们的主要工具是几何奇异扰动理论。

We study flows of smooth vector fields $X$ over invariant surfaces $M$ which are levels of rational first integrals. It leads us to study constrained systems, that is, systems with impasses. We identify a subset $\mathcal{I} \subset M$ which we call "pseudo-impasse" set and analyze the flow of X by points of $\mathcal{I}$. Systems well known in the literature exemplify our results: Lorenz, Chen, Falkner-Skan and Fisher-Kolmogorov. We also study 1-parameter families of integrable systems and unfolding of minimal sets. Our main tool is the geometric singular perturbation theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源