论文标题

Autockt:模拟电路设计的深度加固学习

AutoCkt: Deep Reinforcement Learning of Analog Circuit Designs

论文作者

Settaluri, Keertana, Haj-Ali, Ameer, Huang, Qijing, Hakhamaneshi, Kourosh, Nikolic, Borivoje

论文摘要

在深度缩放的CMO中的能量限制下的领域专业化一直在推动芯片上系统敏捷开发的需求(SOCS)。尽管数字子系统具有有助于从规范到布局快速迭代的设计流,但模拟和混合信号模块面临着一个长期的中间人迭代环路的挑战,它需要专家直觉,以验证该层后电路参数符合原始设计规范。为给定目标设计规范优化电路参数的现有自动化解决方案具有仅示意图,不准确,样本智能或不可推广的局限性。这项工作介绍了Autockt,这是一种使用深钢筋学习训练的机器学习优化框架,该框架不仅为给定的目标规范找到了延伸后电路参数,而且还通过稀疏的亚采样技术获得了有关整个设计空间的知识。我们的结果表明,对于多个电路拓扑,Autockt能够收敛并满足所有目标规格在原理图模拟中至少96.3%的测试设计目标上的所有目标规格,平均比传统的遗传算法快40倍。使用Berkeley Analog Generator,Autockt能够在68小时内设计40 LV通过操作放大器,在考虑布局寄生虫时,比最先进的速度快9.6倍。

Domain specialization under energy constraints in deeply-scaled CMOS has been driving the need for agile development of Systems on a Chip (SoCs). While digital subsystems have design flows that are conducive to rapid iterations from specification to layout, analog and mixed-signal modules face the challenge of a long human-in-the-middle iteration loop that requires expert intuition to verify that post-layout circuit parameters meet the original design specification. Existing automated solutions that optimize circuit parameters for a given target design specification have limitations of being schematic-only, inaccurate, sample-inefficient or not generalizable. This work presents AutoCkt, a machine learning optimization framework trained using deep reinforcement learning that not only finds post-layout circuit parameters for a given target specification, but also gains knowledge about the entire design space through a sparse subsampling technique. Our results show that for multiple circuit topologies, AutoCkt is able to converge and meet all target specifications on at least 96.3% of tested design goals in schematic simulation, on average 40X faster than a traditional genetic algorithm. Using the Berkeley Analog Generator, AutoCkt is able to design 40 LVS passed operational amplifiers in 68 hours, 9.6X faster than the state-of-the-art when considering layout parasitics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源