论文标题

具有短距离电位的分数Schrödinger操作员的散射

The scattering of fractional Schrödinger operators with short range potentials

论文作者

Zhang, Rui, Huang, Tianxiao, Zheng, Quan

论文摘要

对于任何正实数$ s $,我们以统一的方式研究散射理论,用于分数schrödinger$ h = h_0+v $,其中$ h_0 =( - δ)^\ frac s2 $和现实价值的潜在$ v $满足短范围条件。我们证明了Wave Operator的存在和渐近完整性$ W_ \ PM = \ Mathrm {S - } \ Lim_ { $σ_\ mathrm {pp} \ setMinus \ {0 \} $ $ h $的$和特征functions的有限衰减属性。相对于$ v $的允许衰减速率,短距离条件是鲜明的,并且在某种意义上,在无限的情况下,波浪运算符的存在和不存在的衰减阈值要快。我们的方法的灵感来自于S. Agmon和L.Hörmander在1970年代建立的简单特征操作员的限制理论。

For any positive real number $s$, we study the scattering theory in a unified way for the fractional Schrödinger operator $H=H_0+V$, where $H_0=(-Δ)^\frac s2$ and the real-valued potential $V$ satisfies short range condition. We prove the existence and asymptotic completeness of the wave operators $W_\pm=\mathrm{s-}\lim_{t\rightarrow\pm\infty}e^{itH}e^{-itH_0}$, the discreteness and finite multiplicity of the non-zero pure point spectrum $σ_\mathrm{pp}\setminus\{0\}$ of $H$, and the finite decay property of eigenfunctions. The short range condition is sharp with respect to the allowed decay rate of $V$, and the decay threshold for the existence and non-existence of the wave operators is faster than $|x|^{-1}$ at the infinity in some sense. Our approach is inspired by the theory of limiting absorption principle for simply characteristic operators established by S. Agmon and L. Hörmander in the 1970s.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源