论文标题

SUR-FEATNET:通过深度功能学习预测满足的用户比率曲线为图像压缩

SUR-FeatNet: Predicting the Satisfied User Ratio Curvefor Image Compression with Deep Feature Learning

论文作者

Lin, Hanhe, Hosu, Vlad, Fan, Chunling, Zhang, Yun, Mu, Yuchen, Hamzaoui, Raouf, Saupe, Dietmar

论文摘要

损失图像压缩方案的满足用户比率(SUR)曲线(例如JPEG)表征了公正明显差异的互补累积分布函数(JND),这是当参考图像与扭曲的参考图像相比,当受试者可以感知的最小失真级别。可以使用合适的参考图像选择来定义一系列JND。我们提出了第一种预测SUR曲线的深度学习方法。我们展示了如何应用最大似然估计和Anderson-Darling测试来为分布函数选择合适的参数模型。然后,我们使用深度特征学习来预测SUR曲线的样本,并应用最小二乘方法以将参数模型拟合到预测的样品中。我们的深度学习方法依赖于暹罗卷积神经网络,转移学习和深度特征学习,该对使用由参考图像和压缩图像进行训练。 MCL-JCI数据集上的实验显示出最新的性能。例如,预测和地面真相之间的平均bhattacharyya距离第一,第二和第三个JND分布分别为0.0810、0.0702和0.0522,在第一个JND分布的中位数为0.58、0.69、0.69、0.58 db的峰值信噪比的平均绝对差异相应的平均绝对差异。在JND-PANO数据集上进行的进一步实验表明,该方法可以很好地传输到在头部安装显示器上查看的高分辨率全景图像。

The satisfied user ratio (SUR) curve for a lossy image compression scheme, e.g., JPEG, characterizes the complementary cumulative distribution function of the just noticeable difference (JND), the smallest distortion level that can be perceived by a subject when a reference image is compared to a distorted one. A sequence of JNDs can be defined with a suitable successive choice of reference images. We propose the first deep learning approach to predict SUR curves. We show how to apply maximum likelihood estimation and the Anderson-Darling test to select a suitable parametric model for the distribution function. We then use deep feature learning to predict samples of the SUR curve and apply the method of least squares to fit the parametric model to the predicted samples. Our deep learning approach relies on a siamese convolutional neural network, transfer learning, and deep feature learning, using pairs consisting of a reference image and a compressed image for training. Experiments on the MCL-JCI dataset showed state-of-the-art performance. For example, the mean Bhattacharyya distances between the predicted and ground truth first, second, and third JND distributions were 0.0810, 0.0702, and 0.0522, respectively, and the corresponding average absolute differences of the peak signal-to-noise ratio at a median of the first JND distribution were 0.58, 0.69, and 0.58 dB. Further experiments on the JND-Pano dataset showed that the method transfers well to high resolution panoramic images viewed on head-mounted displays.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源