论文标题

关于泰乔诺夫空间中投影集的减少和分离

On reduction and separation of projective sets in Tychonoff spaces

论文作者

Saveliev, Denis I.

论文摘要

我们表明,对于每个Tychonoff空间$ x $和HAUSDORFF操作$ \MATHBFφ$,$ \MATHBFφ类(\ Mathscr z,x)$从零套装中产生的$ x $ by $ x $ byMathbfφ$具有降低或分离属性,如果相应的$ \ nathbfc也相同\ nathbf;特别是,在投影性的决定性下,这些投影集中的这些属性$ x $具有与第一个周期性定理的模式相同的模式,用于投影的真实集合:$ \mathbfς^{1} _ {2n} _ {2n} _ {2n}(\ Mathscr z,x)还原属性时,$ \MATHBFπ^{1} _ {2n}(\ Mathscr Z,X)$和$ \MathBfς^{1} _ {2n+1}(\ Mathscr Z,X)$具有分离属性。

We show that for every Tychonoff space $X$ and Hausdorff operation $\mathbfΦ$, the class $\mathbfΦ(\mathscr Z,X)$ generated from zero sets in $X$ by $\mathbfΦ$ has the reduction or separation property if the corresponding class $\mathbfΦ(\mathscr F,\mathbb R)$ of sets of reals has the same property. In particular, under Projective Determinacy, these properties of such projective sets in $X$ have the same pattern as the First Periodicity Theorem states for projective sets of reals: the classes $\mathbfΣ^{1}_{2n}(\mathscr Z,X)$ and $\mathbfΠ^{1}_{2n+1}(\mathscr Z,X)$ have the reduction property while $\mathbfΠ^{1}_{2n}(\mathscr Z,X)$ and $\mathbfΣ^{1}_{2n+1}(\mathscr Z,X)$ have the separation property.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源