论文标题

在IIB型溶液的精确渐近学上,平均曲率流量

On the precise asymptotics of Type-IIb solutions to mean curvature flow

论文作者

Isenberg, James, Wu, Haotian, Zhang, Zhou

论文摘要

在本文中,我们研究了平均曲率流的非2型IIB溶液的精确渐近造型。确切地说,对于每个实际数字$γ> 0 $,我们在旋转对称的类别中构建平均曲率流解决方案,以下精确的渐近差为$ t \近乎近\ \:(1)高度表面(一个umbilical Point)的最高曲率浓度(一个Umbilical Point)(一个umbilical Point),并以type-ib rave $ 1 $(2tt)$(2tt)$(2tt)$(2tt)$(2tt)。 (2)在尖端的邻域中,溶液的类型IIB炸毁会收敛于被称为“碗孔”的翻译。 (3)在空间无穷大范围内,高表面具有确切的增长率,具体取决于$γ$。

In this paper, we study the precise asymptotics of noncompact Type-IIb solutions to the mean curvature flow. Precisely, for each real number $γ>0$, we construct mean curvature flow solutions, in the rotationally symmetric class, with the following precise asymptotics as $t\nearrow\infty$: (1) The highest curvature concentrates at the tip of the hypersurface (an umbilical point) and blows up at the Type-IIb rate $(2t+1)^{(γ-1)/2}$. (2) In a neighbourhood of the tip, the Type-IIb blow-up of the solution converges to a translating soliton known as the bowl soliton. (3) Near spatial infinity, the hypersurface has a precise growth rate depending on $γ$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源