论文标题

使用深度学习对蛋白质水合密度和自由能的即时预测

On-the-fly Prediction of Protein Hydration Densities and Free Energies using Deep Learning

论文作者

Ghanbarpour, Ahmadreza, Mahmoud, Amr H., Lill, Markus A.

论文摘要

生化系统的热力学特性的计算通常需要使用资源密集型分子模拟方法。其中一个例子是水合位点的热力学分析,即蛋白质表面的水分子的高概率位置,在蛋白质 - 配体关联中起着至关重要的作用,因此必须将其纳入结合率和亲密关系的预测中。为了取代水合站点预测中耗时的仿真,我们开发了两种不同类型的深神经网络模型,旨在预测水合位点数据。在第一种方法中,生成网状的3D图像,代表了放置在常规3D网格上的某些分子探针之间的相互作用,并用静态蛋白包含结合口袋。这些分子相互作用场映射到基于U-NET结构的神经网络的相应3D图像。在第二种方法中,使用基于完全连接的层的神经网络预测了水合占用和热力学。除了直接的蛋白质相互作用场外,每个网格点的环境也使用附近网格点相互作用特性的球形谐波扩展的矩表示。在结构活性关系分析和蛋白质姿势评分上的应用证明了预测的水合信息的实用性。

The calculation of thermodynamic properties of biochemical systems typically requires the use of resource-intensive molecular simulation methods. One example thereof is the thermodynamic profiling of hydration sites, i.e. high-probability locations for water molecules on the protein surface, which play an essential role in protein-ligand associations and must therefore be incorporated in the prediction of binding poses and affinities. To replace time-consuming simulations in hydration site predictions, we developed two different types of deep neural-network models aiming to predict hydration site data. In the first approach, meshed 3D images are generated representing the interactions between certain molecular probes placed on regular 3D grids, encompassing the binding pocket, with the static protein. These molecular interaction fields are mapped to the corresponding 3D image of hydration occupancy using a neural network based on an U-Net architecture. In a second approach, hydration occupancy and thermodynamics were predicted point-wise using a neural network based on fully-connected layers. In addition to direct protein interaction fields, the environment of each grid point was represented using moments of a spherical harmonics expansion of the interaction properties of nearby grid points. Application to structure-activity relationship analysis and protein-ligand pose scoring demonstrates the utility of the predicted hydration information.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源