论文标题
拓扑超导性和偏执量零模式的签名。
Signatures of Topological Superconductivity and Parafermion Zero Modes in Fractional Quantum Hall Edges
论文作者
论文摘要
parafermion零模式是异国情调的紧急激发,可以被视为MATHBB {Z} _n $ Majorafe fermions的概括。存在于分数量子霍尔 - 渗透导体混合系统中,等等,它们可以用作易耐故障拓扑量子计算的潜在构件。我们提出了一个揭示噪声和电流签名的系统。该系统由填充因子$ν= 1/m $(对于超导体的界面上的填充因子$ν= 1/m $(对于奇数整数$ m $)的边缘量子厅的边缘激发(“准粒子”)组成,并且在后射击的情况下。使用扰动计算,我们得出了从该结构传播的电流及其相应的噪声相关函数。重新归一化组分析揭示了从完美正常反射的UV固定点向完美的Andreev反射的IR固定点的流动。在这些固定点附近的差分电导的功率法依赖性由$ m $确定。我们发现在这两个限制上的行为在物理上是可以区分的。尽管接近完美的安德里弗反射,但该系统通过在两个边缘之间的库珀对隧道进行隧穿而偏离平衡,接近正常的反射,这是通过将单个准粒子隧穿到超导体界面处的新出现的parafermion零模式来完成的。这些结果通过精确的解决方案加强。
Parafermion zero modes are exotic emergent excitations that can be considered as $\mathbb{Z}_n$ generalizations of Majorana fermions. Present in fractional quantum Hall-superconductor hybrid systems, among others, they can serve as potential building blocks in fault-tolerant topological quantum computing. We propose a system that reveals noise and current signatures indicative of parafermion zero modes. The system is comprised of the edge excitations ("quasi-particles") of a fractional quantum Hall bulk at filling factor $ν= 1/m$ (for odd integer $m$) incident upon the interface of a superconductor, and in the presence of back-scattering. Using perturbative calculations, we derive the current that propagates away from this structure, and its corresponding noise correlation function. Renormalization group analysis reveals a flow from a UV fixed point of perfect normal reflection towards an IR fixed point of perfect Andreev reflection. The power law dependence of the differential conductance near these fixed points is determined by $m$. We find that behavior at these two limits is physically distinguishable; whereas near perfect Andreev reflection, the system deviates from equilibrium via tunneling of Cooper pairs between the two edges, near perfect Normal reflection this is done via tunneling of a single quasi-particle to an emergent parafermion zero mode at the superconductor interface. These results are fortified by an exact solution.