论文标题

关于孤立奇点解决的拓扑,ii

On the topology of a resolution of isolated singularities, II

论文作者

Di Gennaro, Vincenzo, Franco, Davide

论文摘要

让$ y $成为带有孤立奇点的尺寸$ n $的复杂投影量,$π:x \ t y $ y $ singultions的分辨率,$ g:=π^{ - 1} \ left(\ rm {sing}(y)(y)(y)\ right)$。从分解定理中,一个人知道地图$ h^{k-1}(g)\ to h^k(y,y,y \ backslash {\ rm {sing}}(y))$ n $ n $。同样,相反,假设一个消失的人可以在几页中证明$π$的分解定理。本文的目的是展示消失的直接证明。结果,它遵循了$π$的完整和简短的分解定理,仅涉及普通的共同体。

Let $Y$ be a complex projective variety of dimension $n$ with isolated singularities, $π:X\to Y$ a resolution of singularities, $G:=π^{-1}\left(\rm{Sing}(Y)\right)$ the exceptional locus. From the Decomposition Theorem one knows that the map $H^{k-1}(G)\to H^k(Y,Y\backslash {\rm{Sing}}(Y))$ vanishes for $k>n$. It is also known that, conversely, assuming this vanishing one can prove the Decomposition Theorem for $π$ in few pages. The purpose of the present paper is to exhibit a direct proof of the vanishing. As a consequence, it follows a complete and short proof of the Decomposition Theorem for $π$, involving only ordinary cohomology.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源