论文标题

非线性流量预测是合奏学习的矩阵完成问题

Nonlinear Traffic Prediction as a Matrix Completion Problem with Ensemble Learning

论文作者

Li, Wenqing, Yang, Chuhan, Jabari, Saif Eddin

论文摘要

本文解决了信号交通运营管理的短期流量预测问题。具体而言,我们专注于在高分辨率(第二秒)中预测传感器状态。这与传统的流量预测问题形成鲜明对比,这些问题的重点是预测聚合的流量变量,通常不超过5分钟的时间间隔。我们的贡献可以总结为提供三个见解:首先,我们展示了如何将预测问题建模为矩阵完成问题。其次,我们采用了一个区块坐标下降算法,并证明该算法在亚线性时间中收敛到块坐标优化器。这使我们能够以计算可行的方式来利用高分辨率数据的“ bigness”。第三,我们开发了一种合奏学习(或自适应提升)方法,以将训练错误降低到任何任意错误阈值之内。后者利用了过去几天,因此可以将增强作用解释为捕获数据中的周期性模式。使用模拟数据和来自阿联酋阿布扎比的现实世界高分辨率流量数据集对理论上分析了所提出的方法的性能。我们的实验结果表明,所提出的方法的表现优于其他最先进的算法。

This paper addresses the problem of short-term traffic prediction for signalized traffic operations management. Specifically, we focus on predicting sensor states in high-resolution (second-by-second). This contrasts with traditional traffic forecasting problems, which have focused on predicting aggregated traffic variables, typically over intervals that are no shorter than 5 minutes. Our contributions can be summarized as offering three insights: first, we show how the prediction problem can be modeled as a matrix completion problem. Second, we employ a block-coordinate descent algorithm and demonstrate that the algorithm converges in sub-linear time to a block coordinate-wise optimizer. This allows us to capitalize on the "bigness" of high-resolution data in a computationally feasible way. Third, we develop an ensemble learning (or adaptive boosting) approach to reduce the training error to within any arbitrary error threshold. The latter utilizes past days so that the boosting can be interpreted as capturing periodic patterns in the data. The performance of the proposed method is analyzed theoretically and tested empirically using both simulated data and a real-world high-resolution traffic dataset from Abu Dhabi, UAE. Our experimental results show that the proposed method outperforms other state-of-the-art algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源