论文标题
在终生有限的缓存无线网络中对文件放置和交付的联合优化
Joint Optimization of File Placement and Delivery in Cache-Assisted Wireless Networks with Limited Lifetime and Cache Space
论文作者
论文摘要
在本文中,研究了一个有限的高速缓存空间的高速缓存节点的帮助,在一个单元格中的下行链路文件传输的调度。具体而言,请求用户随机到达,并且基站(BS)反应地将文件与请求的用户和选定的高速缓存节点进行了多播。后者可以从BS卸载其覆盖区域中的流量。我们考虑在有限的寿命内对上述文件放置和交付的联合优化,但受缓存空间约束。在寿命内,在BS处的每个文件传输的多播功率和符号编号的分配被公式为一个动态编程问题,并随机阶段编号。请注意,该问题没有现有的解决方案。我们通过将原始问题转换为具有固定阶段号码的等效有限马尔可夫决策过程(MDP)来开发一个渐近的最佳解决方案框架。然后提出了一种新颖的近似方法来解决维数的诅咒,其中提供了近似值函数的分析表达式。我们还在确切的值函数和近似误差上得出分析界限。近似值函数取决于某些系统统计信息,例如请求用户的分发。针对这些统计数据未知的情况提出了一种强化学习算法。
In this paper, the scheduling of downlink file transmission in one cell with the assistance of cache nodes with finite cache space is studied. Specifically, requesting users arrive randomly and the base station (BS) reactively multicasts files to the requesting users and selected cache nodes. The latter can offload the traffic in their coverage areas from the BS. We consider the joint optimization of the abovementioned file placement and delivery within a finite lifetime subject to the cache space constraint. Within the lifetime, the allocation of multicast power and symbol number for each file transmission at the BS is formulated as a dynamic programming problem with a random stage number. Note that there are no existing solutions to this problem. We develop an asymptotically optimal solution framework by transforming the original problem to an equivalent finite-horizon Markov decision process (MDP) with a fixed stage number. A novel approximation approach is then proposed to address the curse of dimensionality, where the analytical expressions of approximate value functions are provided. We also derive analytical bounds on the exact value function and approximation error. The approximate value functions depend on some system statistics, e.g., requesting users' distribution. One reinforcement learning algorithm is proposed for the scenario where these statistics are unknown.