论文标题

在参数自我辅助矩阵的光谱中定位锥形变性

Locating conical degeneracies in the spectra of parametric self-adjoint matrices

论文作者

Berkolaiko, Gregory, Parulekar, Advait

论文摘要

提出了一个简单的迭代方案,用于定位2个参数的真实对称矩阵家族具有双重特征值的参数值。融合被证明是二次的。还描述了该方案的延伸到复杂的Hermitian矩阵(具有3个参数)和三重特征值的位置(实际对称矩阵的5个参数)。在几个例子中说明了算法融合:一个真实的对称家庭,一个复杂的遗传家庭,一个带有“避免过境”的矩阵家族(无覆盖)和一个5个参数的真实对称矩阵,带有三重特征值。

A simple iterative scheme is proposed for locating the parameter values for which a 2-parameter family of real symmetric matrices has a double eigenvalue. The convergence is proved to be quadratic. An extension of the scheme to complex Hermitian matrices (with 3 parameters) and to location of triple eigenvalues (5 parameters for real symmetric matrices) is also described. Algorithm convergence is illustrated in several examples: a real symmetric family, a complex Hermitian family, a family of matrices with an "avoided crossing" (no covergence) and a 5-parameter family of real symmetric matrices with a triple eigenvalue.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源