论文标题
通过复发分析揭示的开普勒AGN的复杂变异性
Complex Variability of Kepler AGN Revealed by Recurrence Analysis
论文作者
论文摘要
新的时域调查的出现以及天文数据的迫在眉睫的增加,揭示了传统时间序列分析(例如功率光谱分析)中的缺点,以表征活性银河核(AGN)的各种变化,复杂和随机光曲线。来自非线性动力学的新方法的最新应用在表征AGN中较高的可变性和时间尺度的模式方面表现出了希望。特别是复发分析可以提供有关其他方法揭示的特征时间尺度的互补信息,并探究了这些对象中基础物理的性质。开发了复发分析以研究相空间中动态轨迹的复发,这些轨迹可以根据一维时间序列(例如光曲线)构建。我们将复发分析的方法应用于开普勒监控AGN的两个光学光曲线。我们确认一个AGN中光学准周期振荡的检测和周期,并确认从两个物体中从5天到60天的其他方法中回收的其他多个其他时间尺度。我们检测到偏离规律性的光曲线中的区域,提供了确定论和非线性在一条光曲线的机制(KIC 9650712)的机制(KIC 9650712),并确定线性随机过程在其他光曲线中恢复了主要的变异性(Zwicky 229--015)。我们讨论了推动光曲线动态及其各种可变性类别的潜在过程。
The advent of new time domain surveys and the imminent increase in astronomical data expose the shortcomings in traditional time series analysis (such as power spectra analysis) in characterising the abundantly varied, complex and stochastic light curves of Active Galactic Nuclei (AGN). Recent applications of novel methods from non-linear dynamics have shown promise in characterising higher modes of variability and time-scales in AGN. Recurrence analysis in particular can provide complementary information about characteristic time-scales revealed by other methods, as well as probe the nature of the underlying physics in these objects. Recurrence analysis was developed to study the recurrences of dynamical trajectories in phase space, which can be constructed from one-dimensional time series such as light curves. We apply the methods of recurrence analysis to two optical light curves of Kepler-monitored AGN. We confirm the detection and period of an optical quasi-periodic oscillation in one AGN, and confirm multiple other time-scales recovered from other methods ranging from 5 days to 60 days in both objects. We detect regions in the light curves that deviate from regularity, provide evidence of determinism and non-linearity in the mechanisms underlying one light curve (KIC 9650712), and determine a linear stochastic process recovers the dominant variability in the other light curve (Zwicky 229--015). We discuss possible underlying processes driving the dynamics of the light curves and their diverse classes of variability.