论文标题
基于相位调节的腋生的红外微光谱仪的设计
Design of infrared microspectrometers based on phase-modulated axilenses
论文作者
论文摘要
我们设计并表征了一个新型的基于腋窝的衍射光学平台,该平台可灵活地结合了有效的点焦点和光栅选择性,并且与基于4级相位掩码配置的可扩展自上而下的制造兼容。这是使用相位调节的紧凑型腋窝设备来实现的,与传统的菲涅耳透镜相比,在具有较大焦点深度的预定位置,将选定波长的入射辐射聚焦。此外,所提出的设备是极敏感的,并且在宽光谱上保持了较大的聚焦效率。具体而言,在这里我们讨论并表征了为$ 6〜μ $ M---12〜 $ m $ m m波长范围以及$ 4〜μ $ M- 6〜 $ M中波长红外红外(MWIR)范围设计的调制轴突配置(LWIR)。这些设备非常适合在红外局灶平面阵列(IR-FPA)的基板层上的整体整合,并用作紧凑的微光谱仪。我们系统地研究了它们的聚焦效率,光谱响应和跨谈话比率,并展示了对单个平面上的多波长的线性控制。我们的设计方法利用Rayleigh-Sommerfeld(RS)衍射理论,并使用有限元方法(FEM)进行数值验证。最后,我们演示了空间调制的轴突在实现紧凑的单透镜光谱仪的实现中的应用。通过优化我们的设备,我们达到了$δλ= 240nm $ at $λ_0=8μm$和$δλ= 165nm $ a $λ_0=5μm$的最小可区分波长间隔。所提出的设备添加了基本光谱功能,以适应从光谱排序到LWIR到LWIR和MWIR相相比成像和检测的许多应用。
We design and characterize a novel axilens-based diffractive optics platform that flexibly combines efficient point focusing and grating selectivity and is compatible with scalable top-down fabrication based on a 4-level phase mask configuration. This is achieved using phase-modulated compact axilens devices that simultaneously focus incident radiation of selected wavelengths at predefined locations with larger focal depths compared to traditional Fresnel lenses. In addition, the proposed devices are polarization insensitive and maintain a large focusing efficiency over a broad spectral band. Specifically, here we discuss and characterize modulated axilens configurations designed for long-wavelength infrared (LWIR) in the $6~μ$m--12~$μ$m wavelength range and in the $4~μ$m--6~$μ$m mid-wavelength infrared (MWIR) range. These devices are ideally suited for monolithic integration atop the substrate layers of infrared focal plane arrays (IR-FPAs) and for use as compact microspectrometers. We systematically study their focusing efficiency, spectral response, and cross talk ratio, and we demonstrate linear control of multi-wavelength focusing on a single plane. Our design method leverages Rayleigh-Sommerfeld (RS) diffraction theory and is validated numerically using the Finite Element Method (FEM). Finally, we demonstrate the application of spatially modulated axilenses to the realization of compact, single-lens spectrometer. By optimizing our devices, we achieve a minimum distinguishable wavelength interval of $Δλ=240nm$ at $λ_0=8μm$ and $Δλ=165nm$ at $λ_0=5μm$. The proposed devices add fundamental spectroscopic capabilities to compact imaging devices for a number of applications ranging from spectral sorting to LWIR and MWIR phase contrast imaging and detection.