论文标题
位点特异性图神经网络,用于预测氧化分子的质子化能
Site-specific graph neural network for predicting protonation energy of oxygenate molecules
论文作者
论文摘要
生物油分子评估对于化学和运输燃料的可持续发展至关重要。这些含氧分子具有足够的碳,氢和氧原子,可用于开发新的增值分子(化学或运输燃料)。我们研究的一种动机源于以下事实:使用矿物质酸升级是一种经济有效的化学转化。在这个化学升级过程中,将质子(带正电的原子氢)添加到氧原子中是一个核心步骤。分子中氧原子的质子化能决定了反应的热力学可行性和可能的化学反应途径。基于耦合簇理论的量子化学模型用于计算准确的热化学特性,例如氧原子的质子化能和基于质子化的化学转化的可行性。但是,这种方法在计算上太昂贵了,无法探索大量的化学转化空间。我们开发了一种图形神经网络方法,用于预测数百个生物氧化分子的氧原子的质子化能,以预测水性酸性反应的可行性。我们的方法取决于迭代局部非线性嵌入,该局部嵌入逐渐导致远处原子的全球影响和预测质子化能的输出层。我们的方法旨在与集中在奇异分子属性预测上的常用图卷积网络相比,针对分子的单个氧原子的位点特异性预测。我们证明我们的方法有效地学习了含氧分子的质子化能的位置和幅度。
Bio-oil molecule assessment is essential for the sustainable development of chemicals and transportation fuels. These oxygenated molecules have adequate carbon, hydrogen, and oxygen atoms that can be used for developing new value-added molecules (chemicals or transportation fuels). One motivation for our study stems from the fact that a liquid phase upgrading using mineral acid is a cost-effective chemical transformation. In this chemical upgrading process, adding a proton (positively charged atomic hydrogen) to an oxygen atom is a central step. The protonation energies of oxygen atoms in a molecule determine the thermodynamic feasibility of the reaction and likely chemical reaction pathway. A quantum chemical model based on coupled cluster theory is used to compute accurate thermochemical properties such as the protonation energies of oxygen atoms and the feasibility of protonation-based chemical transformations. However, this method is too computationally expensive to explore a large space of chemical transformations. We develop a graph neural network approach for predicting protonation energies of oxygen atoms of hundreds of bioxygenate molecules to predict the feasibility of aqueous acidic reactions. Our approach relies on an iterative local nonlinear embedding that gradually leads to global influence of distant atoms and a output layer that predicts the protonation energy. Our approach is geared to site-specific predictions for individual oxygen atoms of a molecule in comparison with commonly used graph convolutional networks that focus on a singular molecular property prediction. We demonstrate that our approach is effective in learning the location and magnitudes of protonation energies of oxygenated molecules.