论文标题

多纹状体符合纠缠:非共性扩展状态的关系

Multifractality meets entanglement: relation for non-ergodic extended states

论文作者

De Tomasi, Giuseppe, Khaymovich, Ivan M.

论文摘要

在这项工作中,我们通过推广Don N. Page [Phys [Phys。莱特牧师。 71,1291] {\ it稀疏}随机纯状态(S-RP)的情况。这些生活在$ n $的希尔伯特空间中的S-RP定义为归一化向量,只有$ n^d $($ 0 \ le d \ le 1 $)随机非零元素。对于$ d = 1 $,页面使用的这些状态在无限温度下代表厄戈迪克状态。但是,以$ 0 <d <1 $的价格,S-RPS是非凝治和分形的,因为它们以整个希尔伯特空间的消失比率$ n^d/n $限制。从分析和数字上,我们都表明,平均纠缠熵$ {\ MATHCAL {s} _1}(a)子系统$ a $,带有Hilbert Space Dimension $ n_a $,将其缩放为$ \ overline {\ Mathcal {\ Mathcal {s} _1} $ sim $ sim $ n $ n. n_a $。值得注意的是,$ \ OVERLINE {\ MATHCAL {s} _1}(a)$在无限温度下的热(页)值饱和,$ \ overline {\ Mathcal {\ Mathcal {s} _1}(a)\ sim \ sim \ sim \ sim \ sim \ ln n_a $在较大的$ d $中。因此,即使波动函数高度非共进,我们也提供一个例子,即使纠缠熵具有沿着沿着的值。最后,我们将结果推广到Renyi内属$ \ Mathcal {s} _Q(a)$,$ q>> 1 $,并为真实的多重法状状态概括,并且还表明它们的波动在Ergodic State的较窄范围内具有甲基殖民地的行为,$ d = 1 $。

In this work we establish a relation between entanglement entropy and fractal dimension $D$ of generic many-body wave functions, by generalizing the result of Don N. Page [Phys. Rev. Lett. 71, 1291] to the case of {\it sparse} random pure states (S-RPS). These S-RPS living in a Hilbert space of size $N$ are defined as normalized vectors with only $N^D$ ($0 \le D \le 1$) random non-zero elements. For $D=1$ these states used by Page represent ergodic states at infinite temperature. However, for $0<D<1$ the S-RPS are non-ergodic and fractal as they are confined in a vanishing ratio $N^D/N$ of the full Hilbert space. Both analytically and numerically, we show that the mean entanglement entropy ${\mathcal{S}_1}(A)$ of a subsystem $A$, with Hilbert space dimension $N_A$, scales as $\overline{\mathcal{S}_1}(A)\sim D\ln N$ for small fractal dimensions $D$, $N^D< N_A$. Remarkably, $\overline{\mathcal{S}_1}(A)$ saturates at its thermal (Page) value at infinite temperature, $\overline{\mathcal{S}_1}(A)\sim \ln N_A$ at larger $D$. Consequently, we provide an example when the entanglement entropy takes an ergodic value even though the wave function is highly non-ergodic. Finally, we generalize our results to Renyi entropies $\mathcal{S}_q(A)$ with $q>1$ and to genuine multifractal states and also show that their fluctuations have ergodic behavior in narrower vicinity of the ergodic state, $D=1$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源