论文标题
通过量子波动来调整偶极kagome旋转冰中磁性的两步熔化
Tuning the two-step melting of magnetic orders in a dipolar kagome spin ice by quantum fluctuations
论文作者
论文摘要
当磁铁朝向顺磁性相加热时,沮丧的磁铁中的复杂磁序可能会表现出丰富的熔融过程。我们表明,可以通过量子波动来调节这种熔化过程。我们考虑了一个受横向场的kagome晶格偶极模型,并专注于其磁接地状态的热转换,该磁场态具有$ \ sqrt {3} \ times \ times \ sqrt {3} $磁性单元单元。我们的量子蒙特卡洛(QMC)模拟表明,在弱横向场上,$ \ sqrt {3} \ times \ sqrt {3} $相位通过中间磁性电荷有序相融化,其中晶格翻译对称恢复时,而时间反向对称性则损坏。相比之下,在较强的横向场上,QMC模拟建议$ \ sqrt {3} \ times \ sqrt {3} $相位通过浮动的kosterlitz--无尽的相位融化。两个不同的熔化过程由多智力点或一阶相变的短线分开。
Complex magnetic orders in frustrated magnets may exhibit rich melting processes when the magnet is heated toward the paramagnetic phase. We show that one may tune such melting processes by quantum fluctuations. We consider a kagome lattice dipolar Ising model subject to transverse field and focus on the thermal transitions out of its magnetic ground state, which features a $\sqrt{3}\times\sqrt{3}$ magnetic unit cell. Our quantum Monte Carlo (QMC) simulations suggest that, at weak transverse field, the $\sqrt{3}\times\sqrt{3}$ phase melts by way of an intermediate magnetic charge ordered phase where the lattice translation symmetry is restored while the time reversal symmetry remains broken. By contrast, at stronger transverse field, QMC simulations suggest the $\sqrt{3}\times\sqrt{3}$ phase melts through a floating Kosterlitz-Thouless phase. The two distinct melting processes are separated by either a multicritical point or a short line of first order phase transition.