论文标题
图形:在图形稀疏约束下进行盲级卡尔曼过滤的EM算法
GraphEM: EM algorithm for blind Kalman filtering under graphical sparsity constraints
论文作者
论文摘要
在许多信号处理应用程序(例如声学,社交网络分析,生物医学和金融)等许多信号处理应用中,建模和推断是至关重要的。线性高斯状态空间模型是通过隐藏状态的演变来描述时间序列的一种常见方法,其优势是由于著名的Kalman滤波器提供了一个简单的推理过程。分析多元序列时的一个基本问题是搜索其条目(或建模的隐藏状态)之间的关系,尤其是当固有的结构是一个非紧密连接的图表时。在这种情况下,将图形建模与简约约束结合使用,可以限制参数的扩散并启用紧凑的数据表示,专家更容易解释。在这项工作中,我们提出了一种新颖的期望最小化算法,用于估计线性高斯状态空间模型的状态方程中的线性矩阵算子。 M-Step中包括Lasso正则化,我们使用近端分裂Douglas-Rachford算法解决了该套索。数值实验说明了所提出的模型和推理技术的好处,名为Chaphem,而不是依靠Granger因果关系的竞争对手。
Modeling and inference with multivariate sequences is central in a number of signal processing applications such as acoustics, social network analysis, biomedical, and finance, to name a few. The linear-Gaussian state-space model is a common way to describe a time series through the evolution of a hidden state, with the advantage of presenting a simple inference procedure due to the celebrated Kalman filter. A fundamental question when analyzing multivariate sequences is the search for relationships between their entries (or the modeled hidden states), especially when the inherent structure is a non-fully connected graph. In such context, graphical modeling combined with parsimony constraints allows to limit the proliferation of parameters and enables a compact data representation which is easier to interpret by the experts. In this work, we propose a novel expectation-minimization algorithm for estimating the linear matrix operator in the state equation of a linear-Gaussian state-space model. Lasso regularization is included in the M-step, that we solved using a proximal splitting Douglas-Rachford algorithm. Numerical experiments illustrate the benefits of the proposed model and inference technique, named GraphEM, over competitors relying on Granger causality.